Eurasian Soil Science

, Volume 51, Issue 9, pp 1050–1056 | Cite as

The Diversity of Bacterial Communities in Urban Soils

  • L. V. LysakEmail author
  • E. V. Lapygina
Soil Biology


Urbanozems (Urbic Technosols) contaminated by heavy metals and polychlorbiphenyls (Urbic Technosols Toxic) and intruzems (Urbic Technosols Toxic) were studied in Moscow; additionally, we studied recreazems (Urbic Technosols Thaptohumic) and culturozems (Urbic Technosols Pantohumic) on the territory of the Botanical Garden of Moscow State University (Aptekarskii Ogorod, the Apothecaries’ Garden). In the soils contaminated with heavy metals and oil products, the number of viable cells of bacteria decreased, whereas the content of filterable forms of bacteria increased. The taxonomic structure of saprotrophic bacterial complexes in contaminated urban soils was transformed towards an increase in the diversity of bacterial taxa atypical of natural undisturbed soils. Rhodococci (Rhodococcus genus) predominated in the soils contaminated with oil and polychlorbiphenyls, enterobacteria (Escherichia, Enterobacter, and Klebsiella genera) predominated in the soils contaminated with municipal wastes, and Arthrobacter genus was dominant in the soils contaminated with cement dust. Soils of both Botanical Gardens of Moscow State University were characterized by the high population density and specific distribution of bacteria in the profile; the structure of their saprotrophic bacterial complex had some similarity with that in the soils of more southern regions. The obtained data on the bacterial diversity of urban soils attest to considerable transformation of bacterial communities both in the contaminated urban soils and in the soils of botanical gardens.


viability of bacteria filterable forms of bacteria saprotrophic bacterial complex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. D. Ananyeva and D. I. Nikitin, “Size of bacteria in some soil types,” Pochvovedenie, No. 4, 132–135 (1979).Google Scholar
  2. 2.
    T. G. Dobrovol’skaya, The Structure of Bacterial Communities in Soils (Akademkniga, Moscow, 2002) [in Russian].Google Scholar
  3. 3.
    T. G. Dobrovol’skaya, D. G. Zvyagintsev, I. Yu. Chernov, A. V. Golovchenko, G. M. Zenova, L. V. Lysak, N. A. Manucharova, O. E. Marfenina, L. M. Polyanskaya, A. L. Stepanov, and M. M. Umarov, “The role of microorganisms in the ecological functions of soils,” Eurasian Soil Sci. 48 (9), 959–967 (2015).CrossRefGoogle Scholar
  4. 4.
    V. I. Duda, N. E. Suzina, V. N. Polivtseva, and A. M. Boronin, “Ultramicrobacteria: formation of the concept and contribution of ultramicrobacteria to biology,” Microbiology (Moscow) 81, 379–390 (2012).CrossRefGoogle Scholar
  5. 5.
    D. G. Zvyagintsev, Soil and Microorganisms (Moscow State Univ., Moscow, 1987) [in Russian].Google Scholar
  6. 6.
    N. A. Krasil’nikov, “Noncellular forms of microorganisms,” Usp. Sovrem. Biol. 54 (6), 22–32 (1954).Google Scholar
  7. 7.
    L. V. Lysak, T. G. Dobrovol’skaya, and I. N. Skvortsova, Evaluation of Bacterial Diversity of Soils and Identification of Soil Bacteria (MAKS-Press, Moscow, 2003) [in Russian].Google Scholar
  8. 8.
    L. V. Lysak, E. V. Lapygina, I. A. Konova, and D. G. Zvyagintsev, “Definition of the physiological condition of bacteria in soil by means of luminescent dye L7012,” Biol. Bull. (Moscow) 36, 639–642 (2009).CrossRefGoogle Scholar
  9. 9.
    L. V. Lysak, E. V. Lapygina, I. A. Konova, and D. G. Zvyagintsev, “Population density and taxonomic composition of bacterial nanoforms in soils of Russia,” Eurasian Soil Sci. 43 765–770 (2010).CrossRefGoogle Scholar
  10. 10.
    L. V. Lysak and N. N. Sidorenko, “Species diversity of rhodococci in urban soils,” Microbiology (Moscow) 66, 480–481 (1997).Google Scholar
  11. 11.
    L. V. Lysak and N. N. Sidorenko, “Specific microbial communities of polluted soils,” The III Congress of Dokuchaev Society of Soil Scientists, Abstracts of Papers (Moscow, 2000), Book 2, pp. 57–59.Google Scholar
  12. 12.
    L. V. Lysak, N. N. Sidorenko, O. E. Marfenina, and D. G. Zvyagintsev, “Microbial complexes in urban soils,” Eurasian Soil Sci. 33 (1), 70–75 (2000).Google Scholar
  13. 13.
    Practical Manual on Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Moscow State Univ., Moscow, 1991) [in Russian].Google Scholar
  14. 14.
    D. A. Nikitin, O. E. Marfenina, A. G. Kudinova, L. V. Lysak, N. S. Mergelov, A. V. Dolgikh, and A. V. Lupachev, “Microbial biomass and biological activity of soils and soil-like bodies in coastal oases of Antarctica,” Eurasian Soil Sci. 50 (9), 1086–1097 (2017).CrossRefGoogle Scholar
  15. 15.
    Soil, City, and Ecology, Ed. by G. V. Dobrovol’skii (Za Ekonomicheskuyu Gramotnost’, Moscow, 1997) [in Russian].Google Scholar
  16. 16.
    A. V. Rappoport, L. V. Lysak, T. V. Prokof’eva, and M. N. Stroganova, “Specific soils of the Botanical Garden of Moscow State University,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 3, 26–32 (2001).Google Scholar
  17. 17.
    M. S. Rozanova, T. V. Prokof’eva, L. V. Lysak, and A. A. Rakhleeva, “Soil organic matter in the Moscow State University botanical garden on the Vorob’evy Hills,” Eurasian Soil Sci. 49 (9), 1013–1025 (2016).CrossRefGoogle Scholar
  18. 18.
    I. N. Skvortsova, A. V. Rappoport, T. V. Prokof’eva, and A. E. Andreeva, “Biological properties of soils in the Moscow State University Botanical Garden: The branch on Prospekt Mira,” Eurasian Soil Sci. 39 (7), 771–778 (2006).CrossRefGoogle Scholar
  19. 19.
    V. S. Soina, L. V. Lysak, I. A. Konova, E. V. Lapygina, and D. G. Zvyagintsev, “Study of ultramicrobacteria (nanoforms) in soils and subsoil deposits by electron microscopy,” Eurasian Soil Sci. 45 (11), 1048–1056 (2012).CrossRefGoogle Scholar
  20. 20.
    Ecological Functions of Urban Soils, Ed. by A. S. Kurbatova (Madzhenta, Moscow, 2004) [in Russian].Google Scholar
  21. 21.
    P. E. Axelrood, M. L. Chow, C. S. Arnold, K. Lu, J. M. McDermott, and J. Davies, “Cultivation-dependent characterization of bacterial diversity from British Columbia forest soils subjected to disturbance,” Can. J. Microbiol. 48 (7), 643–654 (2002).CrossRefGoogle Scholar
  22. 22.
    B. Braun, U. Bockelmann, E. Grohmann, and U. Szewzyk, “Polyphasic characterization of the bacterial community in an urban soil profile with in situ and culture-dependent methods,” Appl. Soil Ecol. 31 (3), 267–279 (2006).CrossRefGoogle Scholar
  23. 23.
    O. Dilly, J. Bloem, A. Vos, and J. C. Munch, “Bacterial diversity in agricultural soils during litter decomposition,” Appl. Environ. Microbiol. 70 (1), 468–474 (2004).CrossRefGoogle Scholar
  24. 24.
    M. C. Horner-Devine, K. M. Carney, and J. M. Bohannan, “An ecological perspective on bacterial biodiversity,” Proc. R. Soc. B 271, 113–122 (2004).CrossRefGoogle Scholar
  25. 25.
    P. Nannipieri, J. Ascher, M. T. Ceccherini, L. Landi, G. Pietramellara, and G. Renella, “Microbial diversity and soil functions,” Eur. J. Soil Sci. 54, 655–670 (2003).CrossRefGoogle Scholar
  26. 26.
    N. Panikov, “Contribution of nanosized bacteria to the total biomass and activity of a soil microbial community,” Adv. Appl. Microbiol. 57, 245–296 (2005).CrossRefGoogle Scholar
  27. 27.
    V. S. Soina, A. L. Mulyukin, E. V. Demkina, E. A. Vorobyova, and G. I. El-Registan, “The structure of resting bacterial population in soil permafrost,” Astrobiology 4, 435–458 (2004).CrossRefGoogle Scholar
  28. 28.
    S. Tarleral, K. Jangid, A. H. Ivester, W. B. Whitman, and M. A. Williams, “Microbial community succession and bacterial diversity in soils during 77000 years of ecosystem development,” FEMS Microbiol. Ecol. 64 (1), 129–140 (2008).CrossRefGoogle Scholar
  29. 29.
    A. Winding, K. Hund-Rinke, and M. Rutgers, “The use microorganisms in ecological soil classification and assessment concepts,” Ecotoxicol. Environ. Saf. 62 (2), 230–248 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations