Eurasian Soil Science

, Volume 51, Issue 9, pp 1057–1066 | Cite as

Microbiomes of the Soils of Solonetzic Complex with Contrasting Salinization on the Volga–Ural Interfluve

  • T. I. ChernovEmail author
  • A. K. Tkhakakhova
  • M. P. Lebedeva
  • A. D. Zhelezova
  • N. A. Bgazhba
  • O. V. Kutovaya
Soil Biology


The analysis of ribosomal genes has been applied to study microbiomes of two soils of the solonetzic soil complex in the northern Caspian region. These soils—solonetz and quasigleyic chestnut soil—drastically differ in their salinity characteristics. The specificity of the vertical distribution of prokaryotes by the genetic soil horizons from the surface to the depth of 120 cm in these soils is discussed. The differences in the structure of microbiomes in the upper soil horizons can be related to the differences in the vegetation cover of the two soils, whereas the differentiation of microbiomes along the soil profiles is affected by the soil salinization. The solonetz is characterized by a much sharper decrease in the abundance and diversity of microorganisms down the soil profile in comparison with the leached quasigleyic chestnut soil. The total number of prokaryotes is mainly limited by the organic carbon content. In the upper soil horizons, Archaea from the phylum Thaumarchaeota are relatively abundant; their percentage decreases down the soil profiles. In the lower horizons of the solonetz, the genes of Marinobacter bacteria, which are considered marine inhabitants, have been found. It is probable that they persist in the soil since the previous transgression of the Caspian Sea.


sequencing solonetzes Marinobacter Thaumarchaeota 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Field Guide for Classification of Russian Soils (Dokuchaev Soil Science Inst., Moscow, 2008) [in Russian].Google Scholar
  2. 2.
    T. I. Chernov, Candidate’s Dissertation in Biology (Moscow State Univ., Moscow, 2016).Google Scholar
  3. 3.
    T. I. Chernov, A. K. Tkhakakhova, A. D. Zhelezova, and O. V. Kutovaya, “Metagenome of genetic horizons of the soil profile,” in General Achievements and Prospects of Soil Metagenomics (Inform-Navigator, St. Petersburg, 2017), pp. 68–87.Google Scholar
  4. 4.
    T. I. Chernov, A. K. Tkhakakhova, M. P. Lebedeva, and O. V. Kutovaya, “Full-profile analysis of microbiome of virgin light solonchak from the Dzhanybek Research Station,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 77, 66–77 (2015).Google Scholar
  5. 5.
    W. R. Abraham, M. Rohde, and A. Bennasar, “The family Caulobacteraceae,” in The Prokaryotes: Alphaproteobacteria and Betaproteobacteria, Ed. by E. Rosenberg, (Springer-Verlag, Berlin, 2014), pp. 179–205. doi 10.1007/978-3-642-30197-1_259CrossRefGoogle Scholar
  6. 6.
    V. Acosta-Martínez, S. Dowd, Y. Sun, and V. Allen, “Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use,” Soil Biol. Biochem. 40 (12), 2762–2770 (2008).CrossRefGoogle Scholar
  7. 7.
    S. Bates, D. Berg-Lyons, J. G. Caporaso, W. A. Walters, R. Knight, and N. Fierer, “Examining the global distribution of dominant archaeal populations in soil,” ISME J. 5, 908–917 (2011).CrossRefGoogle Scholar
  8. 8.
    G. T. Bergmann, S. T. Bates, K. G. Eilers, C. L. Lauber, J. G. Caporaso, W. A. Walters, R. Knight, and N. Fierer, “The under-recognized dominance of Verrucomicrobia in soil bacterial communities,” Soil Biol. Biochem. 43 (7), 1450–1455 (2011).CrossRefGoogle Scholar
  9. 9.
    C. Brochier-Armanet, B. Boussau, S. Gribaldo, and P. Forterre, “Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota,” Nat. Rev. Microbiol. 6, 245–252 (2008).CrossRefGoogle Scholar
  10. 10.
    B. F. T. Brockett, C. E. Prescott, and S. J. Grayston, “Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada,” Soil Biol. Biochem. 44 (1), 9–20 (2012).CrossRefGoogle Scholar
  11. 11.
    D. Bru, A. Ramette, N. P. Saby, S. Dequiedt, L. Ranjard, C. Jolivet, D. Arrouays, and L. Philippot, “Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale,” ISME J. 5, 532–542 (2011).CrossRefGoogle Scholar
  12. 12.
    R. E. Cameron, Desert Algae: Soil Crusts and Diaphanous Substrata as Algal Habitats, Jet Propulsion Laboratory Technical Report No. 32-971 (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 1966).Google Scholar
  13. 13.
    J. G. Caporaso, J. Kuczynski, J. Stombaugh, et al., “QIIME allows analysis of high throughput community sequencing data,” Nat. Methods 7 (5), 335–336 (2010).CrossRefGoogle Scholar
  14. 14.
    T. I. Chernov, M. P. Lebedeva, A. K. Tkhakakhova, and O. V. Kutovaya, “Profile analysis of microbiomes in soils of solonetz complex in the Caspian lowland,” Eurasian Soil Sci. 50, 64–69 (2017). doi 10.1134/S1064229317010045CrossRefGoogle Scholar
  15. 15.
    R. E. Drenovsky, D. Vo, K. J. Graham, and K. M. Scow, “Soil water content and organic carbon availability are major determinants of soil microbial community composition,” Microb. Ecol. 48, 424–430 (2004).CrossRefGoogle Scholar
  16. 16.
    A. W. Duckworth, W. D. Grant, B. E. Jones, D. Meijer, M. C. Márquez, and A. Ventosa, “Halomonas magadii sp. nov., a new member of the genus Halomonas, isolated from a soda lake of the East African Rift Valley,” Extremophiles 4 (1), 53–60 (2000). doi 10.1007/s007920050007Google Scholar
  17. 17.
    R. Duran, “Marinobacter,” in Handbook of Hydrocarbon and Lipid Microbiology (Springer-Verlag, Berlin, 2010), pp. 1725–1735. doi 10.1007/978-3-540-77587-4_122CrossRefGoogle Scholar
  18. 18.
    K. G. Eilers, C. L. Lauber, R. Knight, and N. Fierer, “Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil,” Soil Biol. Biochem. 42, 896–903 (2010).CrossRefGoogle Scholar
  19. 19.
    A. C. Ferreira, M. F. Nobre, E. Moore, F. A. Rainey, J. R. Battista, and M. S. da Costa, “Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus,” Extremophiles 3 (4), 235–238 (1999).CrossRefGoogle Scholar
  20. 20.
    N. Fierer, J. W. Leff, B. J. Adams, U. N. Nielsen, S. T. Bates, C. L. Lauber, Owense S., J. A. Gilberte, D. H. Wall, and J. G. Caporaso, “Cross-biome metagenomic analyses of soil microbial communities and their functional attributes,” Proc. Natl. Acad. Sci. U.S.A. 109 (52), 21390–21395 (2012).CrossRefGoogle Scholar
  21. 21.
    N. Fierer, J. P. Schimel, and P. A. Holden, “Variations in microbial community composition through two soil depth profiles,” Soil Biol. Biochem. 35, 167–176 (2003).CrossRefGoogle Scholar
  22. 22.
    E. I. Friedmann and M. Galun, “Desert algae, lichens and fungi,” in Desert Biology, Ed. by G. W. Brown (Academic, New York, 1974), Vol. 2, pp. 165–212.CrossRefGoogle Scholar
  23. 23.
    R. E. Glatz, P. W. Lepp, B. B. Ward, and C. A. Francis, “Planktonic microbial community composition across steep physical/chemical gradients in permanently icecovered Lake Bonney, Antarctica,” Geobiology 4 (1), 53–67 (2006). doi 10.1111/j.1472-4669.2006.00057.xCrossRefGoogle Scholar
  24. 24.
    B. Gomez-Silva, F. A. Rainey, K. A. Warren-Rhodes, C. P. McKay, and R. Navarro-Gonzalez, “Atacama desert soil microbiology,” in Microbiology of Extreme Soils, Ed. by P. Dion and C. S. Nautiyal (Springer-Verlag, Berlin, 2008).Google Scholar
  25. 25.
    J. Gu, H. Cai, S. L. Yu, R. Qu, B. Yin, Y. F. Guo, J. Y. Zhao, and X. L. Wu, “Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield,” Int. J. Syst. Evol. Microbiol. 57, 250–254 (2007). doi 10.1099/ijs.0.64522-0CrossRefGoogle Scholar
  26. 26.
    W. H. Hartman, C. J. Richardson, R. Vilgalys, and G. L. Bruland, “Environmental and anthropogenic controls over bacterial communities in wetland soils,” Proc. Natl. Acad. Sci. U.S.A. 105 (46), 17842–17847 (2008).CrossRefGoogle Scholar
  27. 27.
    M. Hartmann, S. Lee, S. J. Hallam, and W. W. Mohn, “Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands,” Environ. Microbiol. 11 (12), 3045–3062 (2009).CrossRefGoogle Scholar
  28. 28.
    E. B. Hollister, A. S. Engledow, A. J. M. Hammett, T. L. Provin, H. H. Wilkinson, and T. J. Gentry, “Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments,” ISME J. 4, 829–838 (2010).CrossRefGoogle Scholar
  29. 29.
    D. Jones and R. M. Keddie, “The genus Arthrobacter,” in The Prokaryotes: A Handbook on the Biology of Bacteria (Springer-Verlag, New York, 2006), pp. 945–960. doi 10.1007/0-387-30743-5_36CrossRefGoogle Scholar
  30. 30.
    J. Z. Kaye, J. B. Sylvan, K. J. Edwards, and J. A. Baross, “Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep-sea environments,” FEMS Microbiol. Ecol. 75 (1), 123–133 (2011). doi 10.1111/j.1574-6941.2010.00984.xCrossRefGoogle Scholar
  31. 31.
    C. L. Lauber, M. Hamady, R. Knight, and N. Fierer, “Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale,” Appl. Environ. Microbiol. 75 (15), 5111–5120 (2009).CrossRefGoogle Scholar
  32. 32.
    H. B. Li, L. P. Zhang, and S. F. Chen, “Halomonas korlensis sp. nov., a moderately halophytic, denitrifying bacterium isolated from saline and alkaline soil,” Int. J. Syst. Evol. Microbiol. 58 (11), 2582–2588 (2008).CrossRefGoogle Scholar
  33. 33.
    R. Liu, Y. Zhang, R. Ding, D. Li, Y. Gao, and M. Yang, “Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils,” J. Biosci. Bioeng. 108 (5), 400–407 (2009).CrossRefGoogle Scholar
  34. 34.
    C. A. Lozupone and R. Knight, “Global patterns in bacterial diversity,” Proc. Natl. Acad. Sci. U.S.A. 104 (27), 11436–11440 (2007).CrossRefGoogle Scholar
  35. 35.
    T. P. Makhalanyane, A. Valverde, E. Gunnigle, A. Frossard, J.-B. Ramond, and D. A. Cowan, “Microbial ecology of hot desert edaphic systems,” FEMS Microbiol. Rev. 39 (2), 203–221 (2015). doi 10.1093/femsre/fuu011CrossRefGoogle Scholar
  36. 36.
    S. Martin, M. C. Márquez, C. Sánchez-Porro, E. Mellado, D. R. Arahal, and A. Ventosa, “Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity,” Int. J. Syst. Evol. Microbiol. 53 (5), 1383–1387 (2003). doi 10.1099/ijs.0.02528-0CrossRefGoogle Scholar
  37. 37.
    M. J. Martínez-Cánovas, E. Quesada, I. Llamas, and V. Béjar, “Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium,” Int. J. Syst. Evol. Microbiol. 54 (3), 733–737 (2004).CrossRefGoogle Scholar
  38. 38.
    N. McKenzie, K. Coughlan, and H. Cresswell, Soil Physical Measurement and Interpretation for Land Evaluation (CSIRO, Collingwood, 2002).Google Scholar
  39. 39.
    M. Pester, C. Schleper, and M. Wagner, “The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology,” Curr. Opin. Microbiol. 14 (3), 300–306 (2011).CrossRefGoogle Scholar
  40. 40.
    J. Quillaguamán, R. Hatti-Kaul, B. Mattiasson, M. T. Alvarez, and O. Delgado, “Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake,” Int. J. Syst. Evol. Microbiol. 54 (3), 721–725 (2004).CrossRefGoogle Scholar
  41. 41.
    D. Richter and D. Markewitz, “How deep is soil?” Bioscience 45 (9), 600–609 (1995).CrossRefGoogle Scholar
  42. 42.
    T. Saito, H. Terato, and O. Yamamoto, “Pigments of Rubrobacter radiotolerans,” Arch. Microbiol. 162 (6), 414–421 (1994).CrossRefGoogle Scholar
  43. 43.
    K. Schutz, E. Kandeler, P. Nagel, S. Scheu, and L. Ruess, “Functional microbial community response to nutrient pulses by artificial groundwater recharge practice in surface soils and subsoils,” FEMS Microbiol. Ecol. 72 (3), 445–455 (2010).CrossRefGoogle Scholar
  44. 44.
    N. Kh. Sergaliev, M. G. Kakishev, A. T. Zhiengaliev, M. A. Volodin, E. E. Andronov, and A. G. Pinaev, “Application of a new purification method of West-Kazakhstan chestnut soil microbiota DNA for metagenomic analysis,” Eurasian Soil Sci. 48, 425–431 (2015).CrossRefGoogle Scholar
  45. 45.
    B. V. Shravage, K. M. Dayananda, M. S. Patole, and Y. S. Shouche, “Molecular microbial diversity of a soil sample and detection of ammonia oxidizers from Cape Evans, McMurdo Dry Valley, Antarctica,” Microbiol. Res. 162 (1), 15–25 (2007).CrossRefGoogle Scholar
  46. 46.
    M. A. C. Silva, A. Cavalett, A. Spinner, D. C. Rosa, R. B. Jasper, M. C. Quecine, et al., “Phylogenetic identification of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean,” SpringerPlus 2 (1), (2013). doi 10.1186/2193-1801-2-127Google Scholar
  47. 47.
    M. Stieglmeier, R. J. E. Alves, and C. Schleper, “The phylum Thaumarchaeota,” in The Prokaryotes: Alphaproteobacteria and Betaproteobacteria (Springer-Verlag, Berlin, 2014), pp. 347–362.Google Scholar
  48. 48.
    USS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2014).Google Scholar
  49. 49.
    C. Valenzuela-Encinas, I. Neria-González, R. J. Alcántara-Hernández, I. Estrada-Alvarado, L. Dendooven, and R. Marsch, “Changes in the bacterial populations of the highly alkaline saline soil of the former Lake Texcoco (Mexico) following flooding,” Extremophiles 13 (4), 609–621 (2009).CrossRefGoogle Scholar
  50. 50.
    J. P. van Leeuwen, I. Djukic, J. Bloem, T. Lehtinen, L. Hemerik, P. C. de Ruiter, and G. J. Lair, “Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain,” Eur. J. Soil Biol. 79, 14–20 (2017).CrossRefGoogle Scholar
  51. 51.
    R. H. Vreeland, “Halomonas,” in Bergey’s Manual of Systematics of Archaea and Bacteria (Springer-Verlag, New York, 2005). doi 10.1002/9781118960608.gbm01190Google Scholar
  52. 52.
    N. E. West, “Structure and function of soil microphytic crusts in wildland ecosystems of arid and semi-arid regions,” Adv. Ecol. Res. 20, 179–223 (1990).CrossRefGoogle Scholar
  53. 53.
    C. Will, A. Thürmer, A. Wollherr, H. Nacke, N. Herold, M. Schrumpf, J. Gutknecht, T. Wubet, F. Buscot, and R. Daniel, “Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes,” Appl. Environ. Microbiol. 76 (20), 6751–6759 (2010).CrossRefGoogle Scholar
  54. 54.
    L. Xu, X. W. Xu, F. X. Meng, Y. Y. Huo, A. Oren, J. Y. Yang, and C. S. Wang, “Halomonas zincidurans sp. nov., a heavy-metal-tolerant bacterium isolated from the deep-sea environment,” Int. J. Syst. Evol. Microbiol. 63 (11), 4230–4236 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. I. Chernov
    • 1
    Email author
  • A. K. Tkhakakhova
    • 1
  • M. P. Lebedeva
    • 1
  • A. D. Zhelezova
    • 1
  • N. A. Bgazhba
    • 1
  • O. V. Kutovaya
    • 1
  1. 1.Dokuchaev Soil Science InstituteMoscowRussia

Personalised recommendations