Eurasian Soil Science

, Volume 51, Issue 9, pp 1105–1110 | Cite as

Physical Properties of Urban Soils in Rostov Agglomeration

  • O. S. BezuglovaEmail author
  • S. S. Tagiverdiev
  • S. N. Gorbov
Degradation, Rehabilitation, and Conservation of Soils


Transformation of particle-size composition, structure, and density of soils upon urbopedogenesis is considered for Rostov agglomeration. Various soils are compared by horizons. It is found that the share of sand fractions increases in upper and middle horizons of migration–segregation chernozems (Calcic Chernozem (Hyperhumic, Loamic)), above all, at the expense of particles of 0.05—0.001 mm in size; with the coarse medium sand fraction 1–0.25 mm being diagnostic for urbopedogenesis. The reason is the introduction of sandy particles upon urban construction, arranging water conduits and other utility lines, as well as the use of icing-control sandy mixtures. The Dolgov-Bakhtin schedule appears to be the most appropriate for assessing the structure of urban soils. Dry sieving testified to the decreasing amount of agriculturally valuable aggregates in all compared pairs of horizons in the sequence of urban soils: under forest vegetation → under steppe vegetation → in the buried massif of urbosoils. The water stability of aggregates decreases in the sequence: soils under steppe vegetation → buried horizons of urbosoils → soils under forest vegetation. The following sequence of urbic horizons (UR and RAT) shows a decrease in the share of agriculturally valuable fractions and an increase in their water stability: heavy-textured UR → light-textured UR → RAT. The density of natural soils varies insignificantly within the city territory, with its urbostratified soils (Calcic Chernozem Novic (Technic Loamic) in residential areas often manifesting the maximal density.


urbostratozem (Urbic Technosol (Mollic Loamic)) migration-segregation chernozem (Calcic Chernozem (Hyperhumic Loamic)) particle-size distribution soil structure density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. S. Bezuglova, S. N. Gorbov, I. V. Morozov, and D. G. Nevidomskaya, Urbopedology (Southern Federal Univ., Rostov-on-Don, 2012) [in Russian].Google Scholar
  2. 2.
    O. S. Bezuglova and M. M. Khyrkhyrova, Soils of Rostov Oblast (Southern Federal Univ., Rostov-on-Don, 2008) [in Russian].Google Scholar
  3. 3.
    A. F. Vadyunina and Z. A. Korchagina, Methods of Studying Soil Physical Properties (Agropromizdat, Moscow, 1986) [in Russian].Google Scholar
  4. 4.
    F. Ya. Gavrilyuk, Chernozems of Western Cis-Caucasus Region (Kharkov State Univ., Kharkov, 1955) [in Russian].Google Scholar
  5. 5.
    M. I. Gerasimova, M. N. Stroganova, N. V. Mozharova, and T. V. Prokof’eva, Genesis, Geography, and Reclamation of Anthropogenic Soils (Oikumena, Smolensk, 2003) [in Russian].Google Scholar
  6. 6.
    S. N. Gorbov and O. S. Bezuglova, “Specific features of organic matter in urban soils of Rostov-on-Don, Eurasian Soil Sci. 47 (8), 792–800 (2014).CrossRefGoogle Scholar
  7. 7.
    G. V. Dobrovol’skii and E. D. Nikitin, Soil Functions in the Biosphere and Ecosystems (Nauka, Moscow, 1990) [in Russian].Google Scholar
  8. 8.
    G. V. Dobrovol’skii and E. D. Nikitin, Ecological Functions of Soils (Moscow State Univ., Moscow, 1986) [in Russian].Google Scholar
  9. 9.
    S. A. Zakharov, Soils of Rostov Oblast and Their Agronomic Characteristics: Brief Description (Rostov-on-Don, 1946), pp. 55–57.Google Scholar
  10. 10.
    V. D. Zelikov, “Characteristics of soils of forest parks, square, and streets of Moscow,” Izv. Vyssh. Uchebn. Zaved., Lesn. Zh., No. 3, 10–15 (1964).Google Scholar
  11. 11.
    L. T. Zemlyanitskii, “Specific urban soils and grounds,” Pochvovedenie, No. 5, 75–84 (1963).Google Scholar
  12. 12.
    V. M. Ivonin and V. E. Avdonin, “Erosion of brown forest soils related to recreational digression,” Eurasian Soil Sci. 33, 212–220 (2000).Google Scholar
  13. 13.
    V. V. Privalenko and O. S. Bezuglova, Ecological Problems of Anthropogenic Landscapes of Rostov Oblast, Vol. 1: Urban Ecology of Rostov-on-Don City (North Caucasian Scientific Center, Rostov-on-Don, 2003) [in Russian].Google Scholar
  14. 14.
    T. V. Prokof’eva, S. N. Sedov, and A. A. Kazdym, “Sources, composition, and conditions of formation of clay material of urban soils,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 60, 41–55 (2007).Google Scholar
  15. 15.
    P. M. Sapozhnikov, “Degradation of physical properties of soils under anthropogenic impact,” Pochvovedenie, No. 11, 60–75 (1994).Google Scholar
  16. 16.
    M. N. Stroganova, Doctoral Dissertation in Biology (Moscow, 1998).Google Scholar
  17. 17.
    S. S. Tagiverdiev, S. N. Gorbov, O. S. Bezuglova, and M. V. Kotik, “Degradation of physical properties of soils of chernozem zone in urban conditions,” Izv. Samar. Nauch. Tsentra, Ross. Akad. Nauk 18 (2), 226–229 (2016).Google Scholar
  18. 18.
    A. V. Teslya, Soil Physics (Orenburg State Univ., Orenburg, 2012) [in Russian].Google Scholar
  19. 19.
    P. J. Craul, “A description of urban soils and their desired characteristics,” J. Arboricult. 11, 330–339 (1985).Google Scholar
  20. 20.
    P. J. Craul, Urban Soil in Landscape Design (Wiley, New York, 1992).Google Scholar
  21. 21.
    S. N. Gorbov, O. S. Bezuglova, K. N. Abrosimov, E. B. Skvortsova, S. S. Tagiverdiev, and I. V. Morozov, “Physical properties of soils in Rostov agglomeration,” Eurasian Soil Sci. 49, 898–907 (2016).CrossRefGoogle Scholar
  22. 22.
    A. Grubler, Technology. Changes in Land Use and Land Cover: A Global Perspective, Ed. by W. B. Meyer and I. B. L. Turner (Cambridge University Press, Cambridge, 1994), pp. 287–328.Google Scholar
  23. 23.
    A. Horváth, P. Szűcs, and A. Bidló, “Soil condition and pollution in urban soils: evaluation of the soil quality in a Hungarian town,” J. Soils Sediments 15, 1825–1835 (2015).CrossRefGoogle Scholar
  24. 24.
    C. Y. Jim, “Physical and chemical properties of a Hong Kong roadside in relation to urban tree growth,” Urban Ecosyst. 2, 171–181 (1988).CrossRefGoogle Scholar
  25. 25.
    P. J. Marcotullio, A. K. Braimoh, and T. Onishi, “The impact of urbanization on soils,” Land Use Soil Resour. 2, 201–250 (2008).CrossRefGoogle Scholar
  26. 26.
    T. V. Prokof’eva, M. I. Gerasimova, O. S. Bezuglova, K. A. Bakhmatova, A. A. Gol’eva, S. N. Gorbov, E. A. Zharikova, N. N. Matinyan, E. N. Nakvasina, and N. E. Sivtseva, “Inclusion of soils and soil-like bodies of urban territories into the Russian soil classification system,” Eurasian Soil Sci. 47, 959–967 (2014).CrossRefGoogle Scholar
  27. 27.
    J. R. Short, D. S. Fanning, M. S. McIntosh, J. E. Foss, and J. C. Patterson, “Soils of mall in Washington, DC. I. Statistical summary of properties,” Soil Sci. Soc. Am. J. 50, 699–705 (1986).CrossRefGoogle Scholar
  28. 28.
    J. M. Tisdall and J. M. Oades, “Organic matter and water-stable aggregates in soils,” J. Soil Sci. 33, 141–163 (1982).CrossRefGoogle Scholar
  29. 29.
    T. Yamashita, H. Flessa, J. Bettina, M. Helfrich, and B. Ludwig, “Organic matter in density fractions of water-stable aggregates in silty soils: effect of land use,” Soil Biol. Biochem. 38, 3222–3234 (2006).CrossRefGoogle Scholar
  30. 30.
    Y. Zong, Q. Xiao, and S. Lu, “Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China),” Environ. Sci. Pollut. Res. 23, 14600–14607 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. S. Bezuglova
    • 1
    Email author
  • S. S. Tagiverdiev
    • 1
  • S. N. Gorbov
    • 1
  1. 1.The Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations