Advertisement

Forced Nonlinear Precession of the Second-Order Magnetization in a Magnetoelastic Material

  • V. S. Vlasov
  • M. S. Kirushev
  • V. G. ShavrovEmail author
  • V. I. ShcheglovEmail author
RADIO PHENOMENA IN SOLIDS AND PLASMA
  • 2 Downloads

Abstract

Nonlinear precession of the second-order magnetization in a normally magnetized plate with magnetoelastic properties is analyzed. Orientational transition of the magnetization vector that lies in a variation of the equilibrium position of the vector due to a variation in the magnetoelastic constant is studied. A system of equation for the equilibrium position of the magnetization vector relative to magnetization components and elastic displacement is derived and solved with the aid of the Cardano method. Parametric portraits are obtained for magnetization and elastic displacement, and the effect of magnetoelasticity on the geometrical properties is revealed using a model of potential. Models of effective fields and quadratic magnetoelastic coupling are proposed to interpret the dependence of the period of precession on the constant of magnetoelastic interaction.

Notes

ACKNOWLEDGMENTS

The numerical analysis of the development of oscillations in time was supported by the Russian Foundation for Basic Research (project no. 17-02-01138-а).

This work was supported by the Russian Science Foundation (project no. 14-22-00279).

REFERENCES

  1. 1.
    A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Nauka, Moscow, 1994; CRC, Boca Raton, Fl., 1996).Google Scholar
  2. 2.
    Ya. A. Monosov, Nonlinear Ferromagnetic Resonance (Nauka, Moscow, 1971) [in Russian].Google Scholar
  3. 3.
    A. G. Temiryazev, M. P. Tikhomirova, and P. E. Zilberman, J. Appl. Phys. 76, 5586 (1994).CrossRefGoogle Scholar
  4. 4.
    P. E. Zilberman, A. G. Temiryazev, and M. P. Tikhomirova, Zh. Eksp. Teor. Fiz. 108, 281 (1995).Google Scholar
  5. 5.
    Yu. V. Gulyaev, P. E. Zil’berman, A. G. Temiryazev, and M. P. Tikhomirova, Phys. Solid State 42, 1094 (2000).CrossRefGoogle Scholar
  6. 6.
    Th. Gerrits, M. L. Schneider, A. B. Kos, and T. J. Silva, Phys. Rev. B 73, 094454(7) (2006).Google Scholar
  7. 7.
    D. I. Sementsov and A. M. Shutyi, Usp. Fiz. Nauk 177, 831 (2007).CrossRefGoogle Scholar
  8. 8.
    K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and R. Z. Levitin, Orientational Transitions in Rare-Earth Magnetics (Nauka, Moscow, 1979).Google Scholar
  9. 9.
    V. S. Vlasov, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 56, 73 (2011).CrossRefGoogle Scholar
  10. 10.
    V. S. Vlasov, L. N. Kotov, and V. I. Shcheglov, Nonlinear Precession of Magnetization Vector under Conditions for Orientational Transition (IPO SyktGU, Syktyvkar, 2013).Google Scholar
  11. 11.
    V. S. Vlasov, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 56, 1117 (2011).CrossRefGoogle Scholar
  12. 12.
    V. S. Vlasov, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 56, 670 (2011).CrossRefGoogle Scholar
  13. 13.
    V. S. Vlasov, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 57, 453 (2012).CrossRefGoogle Scholar
  14. 14.
    V. S. Vlasov, M. S. Kirushev, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 58, 806 (2013).CrossRefGoogle Scholar
  15. 15.
    V. S. Vlasov, M. S. Kirushev, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 58, 847 (2013).CrossRefGoogle Scholar
  16. 16.
    V. S. Vlasov, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 55, 645 (2010).CrossRefGoogle Scholar
  17. 17.
    V. S. Vlasov, M. S. Kirushev, V. G. Shavrov, and V. I. Shcheglov, J. Radioelektron., No. 4, (2015). http://jre.cplire.ru/jre/apr15/7/text.pdf.Google Scholar
  18. 18.
    V. S. Vlasov, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 54, 821 (2009).CrossRefGoogle Scholar
  19. 19.
    R. L. Comstock and R. C. LeCraw, J. Appl. Phys. 34, 3022 (1963).CrossRefGoogle Scholar
  20. 20.
    R. Le-Krou and R. Komstok, Physical Acoustics. Principles and Methods, Ed. by W. P. Mason, Vol. 3: Lattice Dynamics (Academic, New York, 1964; Mir, Moscow, 1968).Google Scholar
  21. 21.
    O. Yu. Belyaeva, L. K. Zarembo, and S. N. Karpachev, Usp. Fiz. Nauk. 162, 107 (1992).CrossRefGoogle Scholar
  22. 22.
    B. A. Goldin, L. N. Kotov, L. K. Zarembo, and S. N. Karpachev, in Spin–Phonon Interactions in Crystals (Ferrites) (Nauka, Leningrad, 1991) [in Russian].Google Scholar
  23. 23.
    A. K. Sushkevich, Fundamentals of the Higher Algebra (Gostekhteorizdat, Moscow, 1941).Google Scholar
  24. 24.
    G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968; Nauka, Moscow, 1973).Google Scholar
  25. 25.
    V. S. Vlasov, A. P. Ivanov, V. G. Shavrov, and V. I. Shcheglov, J. Radioelektron., No. 11, (2013). http://jre.cplire.ru/jre/nov13/3/text.pdf.Google Scholar
  26. 26.
    V. S. Vlasov, A. P. Ivanov, V. G. Shavrov, and V. I. Shcheglov, J. Radioelektron., No. 1, (2014). http://jre.cplire.ru/jre/jan14/11/text.pdf.Google Scholar
  27. 27.
    V. S. Vlasov, A. P. Ivanov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 60, 75 (2015).CrossRefGoogle Scholar
  28. 28.
    V. S. Vlasov, A. P. Ivanov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 60, 280 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Sorokin State UniversitySyktyvkarRussia
  2. 2.Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of SciencesMoscowRussia

Personalised recommendations