Advertisement

Algorithms for Correction of the Navigation Information Using a Satellite Radio Navigation System under Anomalous Measurement Conditions

  • Kai ShenEmail author
  • B. I. Shakhtarin
  • K. A. Neusypin
  • D. T. Nguyen
THEORY AND METHODS OF SIGNAL PROCESSING

Abstract

Algorithms for correction of the aircraft navigation information by using a satellite navigation system and an inertial navigation system are studied. The satellite system signals contain abnormal measurements of various durations. Improvement of the accuracy of navigation determinations is performed by filtering noise, eliminating anomalous spikes from the data, and replacing them with predicted values. It has been proposed to use the theoretically predicted value of the updated sequence in the adaptive Kalman filter in the case of detection of an anomalous measurement. In the case of the appearance of a pack of anomalous measurements, they are replaced by the predicted values obtained by using the trend and the self-organization algorithm.

Notes

REFERENCES

  1. 1.
    L. I. Avgustov, A. V. Babichenko, M. I. Orekhov, et al., Navigation of Aircrafts in the Near-Earth Space (Nauchtekhlitizdat, Moscow, 2015).Google Scholar
  2. 2.
    R. V. Bakit’ko, N. T. Bulavskii, A. P. Gorev, et al., GLONASS. Principles of Construction and Operation, Ed. by A. I. Perov and V. N. Kharisov (Radiotekhnika, Moscow, 2005) [in Russian].Google Scholar
  3. 3.
    Kai Shen, A. V. Proletarskii, and K. A. Neusypin, Vestn. MGTU, Ser. Priborostroenie, No. 2, 28 (2016).Google Scholar
  4. 4.
    Kai Shen, B. I. Shakhtarin, K. A. Neusypin, and A. A. Samokhvalov, J. Commun. Technol. Electron. 62, 868 (2017).CrossRefGoogle Scholar
  5. 5.
    B. I. Shakhtarin, Kai Shen, and K. A. Neusypin, J. Commun. Technol. Electron. 61, 1252 (2016).CrossRefGoogle Scholar
  6. 6.
    B. I. Shakhtarin, Nonlinear Optimum Filtering in Examples and Tasks (Goryachaya Liniya – Telekom, Moscow, 2014).Google Scholar
  7. 7.
    V. M. Vladimirov, A. K. Grechkoseev, and A. S. Tolstikov, Izmer. Tekh., No. 8, 12 (2004).Google Scholar
  8. 8.
    D. V. Stubarev and A. S. Tolstikov, Vestn. NGTU, No. 2 (39), 127 (2010).Google Scholar
  9. 9.
    S. N. Karutin, I. B. Vlasov, and V. V. Dvorkin, Differential Correction and Monitoring of the Global Navigation Satellite Systems (MGU, Moscow, 2014).Google Scholar
  10. 10.
    A. G. Ivakhnenko and I. Ya. Myuller, Self-Organization of Predictive Models (Tekhnika, Kiev, 1985).Google Scholar
  11. 11.
    K. A. Neusypin, A. V. Proletarsky, and Kai Shen, J. Nanjing Univ. Sci. Technol., No. 5, 602 (2014).Google Scholar
  12. 12.
    Kai Shen, M. S. Selezneva, K. A. Neusypin, and A. V. Proletarsky, Metrology Measur. Syst., No. 2, 347 (2017).Google Scholar
  13. 13.
    A. G. Ivakhnenko, IEEE Trans. Syst. Man Cybern. 1, 364 (1971).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • Kai Shen
    • 1
    • 2
    Email author
  • B. I. Shakhtarin
    • 2
  • K. A. Neusypin
    • 2
  • D. T. Nguyen
    • 2
  1. 1.Beijing Institute of TechnologyBeijingChina
  2. 2.Moscow State Technical UniversityMoscowRussia

Personalised recommendations