Construction of the Approximate Solution to the Problems of Diffraction of Electromagnetic Waves by Small Particles with the Use of the Pattern Equation Method

  • D. B. Demin
  • A. I. Kleev
  • A. G. KyurkchanEmail author


Evident approximate formulas are given for the integral characteristics of scattering. These formulas can be applied for small 3D scatterers having complex shapes. For some examples, the results of the approximate approach are compared with the exact results obtained with the help of the Pattern Equation Method. It is shown for a wide range of the problem parameters that the accuracy of computations controlled with the use of the calculated balance of the power fluxes for the incident and scattered waves (i.e., with the use of the test of fulfillment of the optical theorem) is quite sufficient for the practice.



This study was supported in part by the Russian Foundation for Basic Research, project no. 16-02-00247 A.


  1. 1.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).CrossRefGoogle Scholar
  2. 2.
    M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic, San Diego, 2000).Google Scholar
  3. 3.
    V. V. Klimov, Nanoplazmonika (Fizmatlit, Moscow, 2010).Google Scholar
  4. 4.
    R. Boyack and E. C. Le Ru, Phys. Chem. Chem. Phys. 11, 7398 (2009).CrossRefGoogle Scholar
  5. 5.
    X. Li, L. Xie, and X. Cheng, J. Quant. Spectrosc. Radiat. Transfer 113, 251 (2012).CrossRefGoogle Scholar
  6. 6.
    H. Kuwata, K. Eumi, and K. Miyano, Appl. Phys. Lett. 83, 4625 (2003).CrossRefGoogle Scholar
  7. 7.
    X. Cai, R. Zhu, and G. Hu, Metamaterials 2, 220 (2008).CrossRefGoogle Scholar
  8. 8.
    V. G. Farafonov, Opt. Spektrosk. 88, 492 (2000).Google Scholar
  9. 9.
    V. G. Farafonov, Opt. Spektrosk. 90, 826 (2001).Google Scholar
  10. 10.
    R. E. Collin, IEEE Trans. Antennas Propag. 29, 795 (1981).CrossRefGoogle Scholar
  11. 11.
    V. G. Farafonov and V. I. Ustimov, Opt. Spektrosk. 122, 287 (2017).Google Scholar
  12. 12.
    A. G. Kyurkchan, Dokl. Akad. Nauk 325, 273 (1992).MathSciNetGoogle Scholar
  13. 13.
    A. G. Kyurkchan and N. I. Smirnova, Mathematical Modeling in Diffraction Theory Based on A Priori Information on the Analytic Properties of the Solution (Elsevier, Amsterdam, 2016).Google Scholar
  14. 14.
    A. G. Kyurkchan and A. I. Kleev, Radiotekh. Elektron. (Moscow) 40, 897).Google Scholar
  15. 15.
    D. B. Demin, A. I. Kleev, and A. G. Kyurkchan, T‑Comm. Telekommun. Transport 10 (10), 38 (2016).Google Scholar
  16. 16.
    D. B. Demin, A. I. Kleev, and A. G. Kyurkchan, J. Quant. Spectrosc. Radiat. Transfer 187 (1), 287 (2017).CrossRefGoogle Scholar
  17. 17.
    D. B. Demin, A. I. Kleev, and A. G. Kyurkchan, J. Commun. Technol. Electron. 63, 505 (2018).CrossRefGoogle Scholar
  18. 18.
    A. G. Kyurkchan, J. Commun. Technol. Electron. 45, 970 (2000).Google Scholar
  19. 19.
    A. G. Kyurkchan and D. B. Demin, Tech. Phys. 74, 165 (2004).CrossRefGoogle Scholar
  20. 20.
    P. S. Carney, J. C. Schotland, and E. Wolf, Phys. Rev. E 70, 036611 (2004).CrossRefGoogle Scholar
  21. 21.
    M. Venkatapathi, J. Quant. Spectrosc. Radiat. Transfer 113, 1705 (2012).CrossRefGoogle Scholar
  22. 22.
    F. G. Mitri, J. Quant. Spectrosc. Radiat. Transfer 166, 81 (2015).CrossRefGoogle Scholar
  23. 23.
    Yu. Eremin and T. Wriedt, J. Quant. Spectrosc. Radiat. Transfer 185, 22 (2016).CrossRefGoogle Scholar
  24. 24.
    L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media (Nauka, Moscow, 2003; Pergamon, Oxford, 1984).Google Scholar
  25. 25.
    M. A. Karam, D. M. Levine, Y. M. Antar, and A. Stogryn, IEEE Trans. Antennas Propag. 43, 681 (1995).CrossRefGoogle Scholar
  26. 26.
    Handbook of Mathematical Functions, Ed. by M. Abramovitz and I. Stegun (Dover, New York, 1971; Nauka, Moscow, 1979).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • D. B. Demin
    • 1
  • A. I. Kleev
    • 2
  • A. G. Kyurkchan
    • 1
    • 3
    • 4
    Email author
  1. 1.Moscow Technical University of Communications and InformaticsMoscowRussia
  2. 2.P. L. Kapitza Institute for Physical Problems of RASMoscowRussia
  3. 3.Kotel’nikov Institute of Radio Engineering and Electronics (Fryazino Branch), Russian Academy of SciencesFryazinoRussia
  4. 4.Central Research Institute of CommunicationsMoscowRussia

Personalised recommendations