Advertisement

Voltage Differencing Transconductance Amplifier-Based Quadrature Oscillator and Biquadratic Filter Realization with All Grounded Passive Elements

  • W. Tangsrirat
THEORY OF RADIO CIRCUITS
  • 3 Downloads

Abstract

The work realizes the sinusoidal quadrature oscillator and biquadratic filter with the same configuration using merely two voltage differencing transconductance amplifiers (VDTAs) as active devices and one grounded resistor and two grounded capacitor as passive elements. Performing the quadrature oscillator, the realized circuit is capable of producing two quadrature voltage outputs with almost equal amplitudes, and an independent electronic control of oscillation condition and oscillation frequency. Operating in voltage-mode biquadratic filter, the circuit can simultaneously generate the bandpass and lowpass filtering functions without any matching constraints. The natural angular frequency and the quality factor of the filter are independently and electronically adjustable. The effects of the VDTA non-idealities are also investigated in detail. Simulation results with TSMC 0.25 μm CMOS technology validate both working functions of the proposed circuit.

Keywords:

voltage differencing transconductance amplifier (VDTA) quadrature oscillator (QO) active filter biquadratic filter voltage-mode circuits 

Notes

ACKNOWLEDGMENTS

This work was supported by King Mongkut’s Institute of Technology Ladkrabang Research Fund [grant number KREF116001]. The author is also immensely grateful to Ms. Pitchayanin Moonmuang for assistance with the circuit simulation, who moderated this paper and in that line improved the manuscript significantly.

REFERENCES

  1. 1.
    D. Biolek, R. Senani, V. Biolkova, and Z. Kolka, Radioengineering 17, 15 (2008).Google Scholar
  2. 2.
    N. Herencsar, R. Sotner, J. Koton, J. Misurec, and K. Vrba, Elektron. &Elektrotech. 19, 87 (2013).Google Scholar
  3. 3.
    D. Prasad, M. Srivastava, and D. R. Bhaskar, Circuits Syst. 4, 169 (2014).CrossRefGoogle Scholar
  4. 4.
    W. Tangsrirat, Indian J. Pure & Appl. Phys. 55, 254 (2017).Google Scholar
  5. 5.
    A. Yesil, F. Kacar, and H. Kuntman, Radioengineering 20, 632 (2011).Google Scholar
  6. 6.
    J. Satansup, T. Pukkalanun, and W. Tangsrirat, Circuits Syst. Signal Process. 32, 945 (2013).CrossRefGoogle Scholar
  7. 7.
    A. Yesil and F. Kacar, Radioengineering 22, 1016 (2013).Google Scholar
  8. 8.
    D. Prasad, D. R. Bhaskar, and M. Srivastava, Indian J. Pure & Appl. Phys. 51, 864 (2013).Google Scholar
  9. 9.
    W. Mekhum and W. Jaikla, Theor. Appl. Electric. Eng. 11, 494 (2013).Google Scholar
  10. 10.
    S. Maneewan, N. Udorn, D. Duangmalai, P. Silpan, and W. Jaikla, Theor. Appl. Electric. Eng. 12, 40 (2014).Google Scholar
  11. 11.
    J. Jerabek, R. Sotner, and K. Vrba, Rev. Roum. Sci. Tech.–Electrotech. et Energ. 59, 163 (2014).Google Scholar
  12. 12.
    D. Prasad, D. R. Bhaskar, and M. Srivastava, Circuits Syst. 4, 32 (2014).Google Scholar
  13. 13.
    J. Satansup and W. Tangsrirat, Microelectron. J. 45, 613 (2014).CrossRefGoogle Scholar
  14. 14.
    D. Prasad and D. R. Bhaskar, ISRN Electron. 2012, ID 382560 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Faculty of Engineering, King Mongkut’s Institute of Technology LadkrabangBangkokThailand

Personalised recommendations