Advertisement

Volume Magnetostatic Spin Waves in 3D Ferromagnetic Structures

  • P. A. Popov
  • A. Yu. SharaevskayaEmail author
  • D. V. Kalyabin
  • A. I. Stognii
  • E. N. Beginin
  • A. V. Sadovnikov
  • S. A. Nikitov
RADIO PHENOMENA IN SOLIDS AND PLASMA
  • 56 Downloads

Abstract

Propagation of volume spin magnetostatic waves in meander-shaped ferromagnetic films with vertically and horizontally coupled segments is studied. Conditions under which forward and backward volume magnetostatic waves simultaneously exist in the films are determined. Micromagnetic simulation and expansion in terms of plane waves are used to calculate internal effective magnetic fields and dispersion characteristics of the waves in such structures. Spectra of coupled waves in meander-shaped vertically coupled ferromagnetic films are studied. Prospects for application of the above structures in the development of magnonic elements are analyzed.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project nos. 18-07-00509A and 18-57-00006 Bel_a) and the Government of the Russian Federation (project no. 074-02-2018-286 for the Laboratory of Terahertz Spintronics of the Moscow Institute of Physics and Technology).

REFERENCES

  1. 1.
    V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010).CrossRefGoogle Scholar
  2. 2.
    A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, Nature Phys. 11, 453 (2015).CrossRefGoogle Scholar
  3. 3.
    S. A. Nikitov, D. V. Kalyabin, I. V. Lisenkov, et al., Usp. Fiz. Nauk 185, 1009 (2015).CrossRefGoogle Scholar
  4. 4.
    S. A. Nikitov, P. Tailhades, and C. S. Tsai, J. Magn. Magn. Mater. 236, 320 (2001).CrossRefGoogle Scholar
  5. 5.
    A. V. Chumak, A. A. Serga, and B. Hillebrands, J. Phys. D: Appl. Phys. 50, 244001 (2017).CrossRefGoogle Scholar
  6. 6.
    D. Sander, S. O. Valenzuela, D. Makarov, et al., J. Phys. D: Appl. Phys. 50, 363001 (2017).CrossRefGoogle Scholar
  7. 7.
    J. Slaughter, Annual Rev. Mater. Res. 39, 277 (2009).CrossRefGoogle Scholar
  8. 8.
    D. Apalkov, A. Ong, A. Driskill-Smith, et al., ACM J. Emerging Technol. in Comput. Systems (JETC) 9 (2), 13 (2013).Google Scholar
  9. 9.
    S. Sugahara and J. Nitta, Proc. IEEE 98, 2124 (2010).CrossRefGoogle Scholar
  10. 10.
    https://www.semiconductors.org/clientuploads/Research_ Technology/ITRS/2013/2013ExecutiveSummary.pdf).Google Scholar
  11. 11.
    M. Okuda, T. Schwarze, J. C. Eloi, et al., Nanotecnology 28 (15), 155301 (2017).Google Scholar
  12. 12.
    G. D. Nipan, A. I. Stognii, and V. A. Ketsko, Usp. Khim. 81, 458 (2012).CrossRefGoogle Scholar
  13. 13.
    J. Tang, T. Nie, and K. L. Wang, ECS Trans. 64, 613 (2014).CrossRefGoogle Scholar
  14. 14.
    H. T. Nguyen, T. M. Nguyen, and M. Cottam, Phys. Rev. B 76, 134413 (2007).CrossRefGoogle Scholar
  15. 15.
    J. Topp, J. Podbielski, D. Heitmann, and D. Grundler, Phys. Rev. B. 78, 024431 (2008).CrossRefGoogle Scholar
  16. 16.
    M. Krawczyk and H. Puszkarski, Phys. Rev. B 77, 054437 (2008).CrossRefGoogle Scholar
  17. 17.
    P. Graczyk, M. Krawczyk, S. Dhuey, et al., https://arxiv.org/abs/1805.12178.Google Scholar
  18. 18.
    V. E. Demidov, S. Urazhdin, A. Zholud, et al., Sci. Rep. 5, 8578 (2015).CrossRefGoogle Scholar
  19. 19.
    V. E. Demidov, M. P. Kostylev, K. Rott, et al., Appl. Phys. Lett. 99, 082507 (2011).CrossRefGoogle Scholar
  20. 20.
    A. V. Sadovnikov, C. S. Davies, V. Kruglyak, et al., Phys. Rev. B 96, 060401 (2017).CrossRefGoogle Scholar
  21. 21.
    I. Lisenkov, D. Kalyabin, S. Osokin, et al., J. Magn. Magn. Mater. 378, 313 (2015).CrossRefGoogle Scholar
  22. 22.
    Y. Barabanenkov, S. Osokin, D. Kalyabin, and S. Nikitov, Phys. Rev. B 94, 184409 (2016).CrossRefGoogle Scholar
  23. 23.
    T. Ueda, Y. Ueda, H. Shimasaki, and M. Tsutsumi, IEEE Trans. Magn. 39, 3157 (2003).CrossRefGoogle Scholar
  24. 24.
    Spin Wave Confinement, Ed. by S. O. Demokritov, (Pan Stanford, Singapore, 2008).Google Scholar
  25. 25.
    Spin Wave Confinement – Propagating Waves, Ed. by S. O. Demokritov, (Pan Stanford Publishing, Singapore, 2017).Google Scholar
  26. 26.
    M. Morozova, A. Sharaevskaya, A. Sadovnikov, et al., J. Appl. Phys. 120, 223901 (2016).CrossRefGoogle Scholar
  27. 27.
    E. N. Beginin, A. V. Sadovnikov, A. Y. Sharaevskaya, et al., Appl. Phys. Lett. 112, 122404 (2018).CrossRefGoogle Scholar
  28. 28.
    A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Nauka, Moscow, 1994; CRC, Boca Raton, Fl., 1996).Google Scholar
  29. 29.
    D. D. Stancil and A. Prabhakar, Spin Waves. Theory and Applications (Springer, New York, 2009).zbMATHGoogle Scholar
  30. 30.
    P. Kabos and V. Stalmachov, Magnetostatic Waves and Their Application (Springer, New York, 1994), pp. 5–37.Google Scholar
  31. 31.
    R. W. Damon and J. Eschbach, J. Phys. Chem. Solids 19, 308 (1961).CrossRefGoogle Scholar
  32. 32.
    A. Vansteenkiste, J. Leliaert, M. Dvornik, et al., AIP Advances 4, 107133 (2014).CrossRefGoogle Scholar
  33. 33.
    H. Sasaki and N. Mikoshiba, Electron. Lett.15 (6), 172 (1979).CrossRefGoogle Scholar
  34. 34.
    S. A. Osokin, A. R. Safin, Y. N. Barabanenkov, and S. A. Nikitov, J. Magn. Magn. Mater. 465, 519 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • P. A. Popov
    • 1
    • 3
  • A. Yu. Sharaevskaya
    • 1
    • 2
    Email author
  • D. V. Kalyabin
    • 1
    • 3
  • A. I. Stognii
    • 4
  • E. N. Beginin
    • 2
  • A. V. Sadovnikov
    • 1
    • 2
  • S. A. Nikitov
    • 1
    • 2
    • 3
  1. 1.Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of SciencesMoscowRussia
  2. 2.Chernyshevsky State UniversitySaratovRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblast, Russia
  4. 4.Scientific Practical Center for Material Science, National Academy of Sciences of BelarusMinskBelarus

Personalised recommendations