Advertisement

A Method for Constructing Parity-Check Matrices of Quasi-Cyclic LDPC Codes Over GF(q)

  • S. A. KruglikEmail author
  • V. S. PotapovaEmail author
  • A. A. FrolovEmail author
DATA TRANSMISSION IN COMPUTER NETWORKS
  • 110 Downloads

Abstract

An algorithm for constructing parity-check matrices of non-binary quasi-cyclic low-density parity-check (NB QC-LDPC) codes is proposed. The algorithm finds short cycles in the base matrix and tries to eliminate them by selecting the circulants and the elements of GF(q). The algorithm tries to eliminate the cycles with the smallest number edges going outside the cycle. The efficiency of the algorithm is demonstrated by means of simulations. In order to explain the simulation results we also derive upper bounds on the minimum distance of NB QC-LDPC codes.

Keywords:

LDPC code parity-check matrix iterative decoding threshold Tanner graph cycle Galois field 

Notes

ACKNOWLEDGMENTS

The research was carried out at Skoltech and supported by the Russian Science Foundation (project no. 18-19-00673).

REFERENCES

  1. 1.
    R. M. Tanner, “On quasi-cyclic repeat-accumulate codes,” in Proc. 37th Allerton Conf. Commun., Contr., Comput., Monticello, IL, Sept. 22–24, 1999 (Allerton House, 1999), pp. 249–259.Google Scholar
  2. 2.
    M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant permutation matrices,” IEEE Trans. Inf. Theory 50, 1788–1793 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    R. G. Gallager, Low-Density Parity-Check Codes (M.I.T. Press, Cambridge, MA, 1963).zbMATHGoogle Scholar
  4. 4.
    R. M. Tanner, “A recursive approach to low-complexity codes,” IEEE Trans. Inf. Theory 27, 533–547 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Thorpe, “Low-density parity-check (LDPC) codes constructed from protographs,” JPL, IPN Progress Rep. 42, 154 (2003).Google Scholar
  6. 6.
    Z. Li, L. Chen, L. Zeng, S. Lin, and W. H. Fong, “Efficient encoding of quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun. 54, 71–78 (2006).CrossRefGoogle Scholar
  7. 7.
    F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. Inf. Theory 47, 498–519 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    M. Davey and D. MacKay, “Low-density parity check codes over GF(q),” IEEE Commun. Lett. 2, 165–167 (1998).CrossRefGoogle Scholar
  9. 9.
    H. Song and J. R. Cruz, “Reduced-complexity decoding of Q-ary LDPC codes for magnetic recording,” IEEE Trans. Magnetics 39, 1081–1087 (2003).CrossRefGoogle Scholar
  10. 10.
    H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding of LDPC codes over GF(q),” in Proc. IEEE Int. Conf. on Communications,Paris, June 20–24, 2004 (IEEE, Piscataway, 2004), pp. 772–776.Google Scholar
  11. 11.
    L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over GF(2q),” in Proc. 2003 Inf. Theory Workshop, Paris, France, Mar. 2003 (IEEE, Piscataway, 2003), pp. 70–73.Google Scholar
  12. 12.
    D. Declercq and M. Fossorier, “Decoding algorithms for aonbinary LDPC codes over GF(q),” IEEE Trans. on Commun. 55, 633–643 (2007).CrossRefGoogle Scholar
  13. 13.
    G. Liva and M. Chiani, “Protograph LDPC codes design based on EXIT analysis,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM 2007), Washington, DC, Nov. 26–30, 2007 (IEEE, New York, 2007), pp. 3250–3254.Google Scholar
  14. 14.
    T. Y. Chen, K. Vakilinia, D. Divsalar, and R. D. Wesel, “Protograph-based raptor-like LDPC codes,” IEEE Trans. Commun. 63, 1522–1532 (2015).CrossRefGoogle Scholar
  15. 15.
    A. Bazarsky, N. Presman, and S. Litsyn, “Design of non-binary quasi-cyclic LDPC codes by ACE optimization,” in Proc. IEEE Inf. Theory Workshop, Sevilla, Spain, 2013 (IEEE, New York, 2013).Google Scholar
  16. 16.
    H. Xiao and A. H. Banihashemi, “Improved progressive-edge-growth (PEG) construction of irregular LDPC codes,” IEEE Commun. Lett. 8, 715–717 (2004).CrossRefGoogle Scholar
  17. 17.
    X. Hu, E. Eleftheriou, and D. Arnold, “Irregular progressive edge-growth (PEG) tanner graphs,” in Proc. ISIT 2002, Lausanne, Switzerland, June 30–July 5, 2002 (IEEE, New York, 2002).Google Scholar
  18. 18.
    T. Richardson and R. Urbanke, Modern Coding Theory (Cambridge Univ. Press, Cambridge, 2008).CrossRefzbMATHGoogle Scholar
  19. 19.
    R. Smarandache and P. O. Vontobel, “Quasi-cyclic LDPC codes: influence of proto- and tanner-graph structure on minimum hamming distance upper bounds,” IEEE Trans. Inf. Theory 58, 585–607 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    D. J. C. MacKay and M. C. Davey, “Evaluation of Gallager codes for short block length and high rate applications,” in Codes, Systems, and Graphical Models, Minneapolis, MN, 1999, Ed. by B. Marcus and J. Rosenthal (Springer-Verlag, New York, 2001), pp. 113–130.Google Scholar
  21. 21.
    T. Richardson and R. Urbanke, Modern Coding Theory (Cambridge Univ. Press, Cambridge, U. K., 2008).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Skolkovo Institute of Science and TechnologyMoscowRussia
  2. 2.Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscowRussia

Personalised recommendations