Advertisement

Fast Recursive Computation of Composite Correlation Filters

  • V. I. KoberEmail author
  • A. N. RuchayEmail author
  • V. N. KarnaukhovEmail author
THEORY AND METHODS OF INFORMATION PROCESSING
  • 3 Downloads

Abstract—Algorithms for tracking multiple objects using correlation filters require calculation of a composite filter based on synthetic discriminant functions in order to increase the robustness to changes in posture, partial overlapping of objects by other objects, scaling, rotation, nonuniform illumination, and complex background. The calculation algorithm has large computational complexity. In this paper, we propose recursive calculation of a composite filter using algorithms for rapid inversion of matrices to accelerate synthesis of the filter. Computer simulation results on calculation of a composite correlation filter are presented and discussed in terms of the computation accuracy and the rate of calculation.

Keywords: composite filter correlation filter synthetic discriminant function 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 15-19-10010.

REFERENCES

  1. 1.
    B. Karasulu and S. Korukoglu, Performance Evaluation Software: Moving Object Detection and Tracking in Videos (Springer-Verlag, New York, 2013).CrossRefGoogle Scholar
  2. 2.
    A. W. M. Smeulders, Dung M. Chu, Rita Cucchiara, et al., “Visual tracking: An experimental survey,” IEEE Trans. Pattern Anal. Mach. Intell. 36, 1442–1468 (2014).CrossRefGoogle Scholar
  3. 3.
    S. E. Ontiveros-Gallardo and V. Kober, “Objects tracking with adaptive correlation filters and kalman filtering,” Proc. SPIE’s 60 Ann. Meeting 9598, 95980X-8 (2015).Google Scholar
  4. 4.
    S. E. Ontiveros-Gallardo and V. Kober, “Correlation-based tracking using tunable training and Kalman prediction,” Proc. SPIE 9971, 997129–9 (2016).CrossRefGoogle Scholar
  5. 5.
    A. Ruchay and V. Kober, “A correlation-based algorithm for recognition and tracking of partially occluded objects,” Proc. SPIE 9971, 99712 (2016).Google Scholar
  6. 6.
    B. V. K. V. Kumar, A. Mahalanobis, and R. D. Juday, Correlation Pattern Recognition (Cambridge Univ. Press, New York, 2005).CrossRefzbMATHGoogle Scholar
  7. 7.
    B. V. K. V. Kumar, J. A. Fernandez, A. Rodriguez, and V. N. Boddeti, “Recent advances in correlation filter theory and application,” Proc. SPIE 9094, 909404–13 (2014).CrossRefGoogle Scholar
  8. 8.
    A. Cuevas, V. H. Diaz-Ramirez, V. Kober, and L. Trujillo, “Facial recognition using composite correlation filters designed with multiobjective combinatorial optimization,” Proc. SPIE 9217, 921710–8 (2014).CrossRefGoogle Scholar
  9. 9.
    P. M. Aguilar-González, V. Kober, and V. H. Díaz-Ramírez, “Adaptive composite filters for pattern recognition in nonoverlappingscenes using noisy training images,” Pattern Recogn. Lett. 41, 83–92 (2014).CrossRefGoogle Scholar
  10. 10.
    V. H. Díaz-Ramírez, K. Picos, and V. Kober, “Object tracking in nonuniform illumination using space-variant correlation filters,” in Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (Proc. 18th Iberoamerican Congress, CIARP 2013, Havana, Cuba, Nov. 20–23, 2013), Ed. by J. Ruiz-Shulcloper and G. S. Di Baja, Part II, (Berlin, Springer-Verlag, 2013), pp. 455–462.Google Scholar
  11. 11.
    V. H. Diaz-Ramirez, V. Contreras, V. Kober, and Kenia Picos, “Real-time tracking of multiple objects using adaptive correlation filters with complex constraints,” Opt. Commun. 309, 265–278 (2013).CrossRefGoogle Scholar
  12. 12.
    V. H. Diaz-Ramirez, K. Picos, and V. Kober, “Target tracking in nonuniform illumination conditions using locally adaptive correlation filters,” Opt. Commun. 323, 32–43 (2014).CrossRefGoogle Scholar
  13. 13.
    L. N. Gaxiola, V. H. Díaz-Ramírez, J. J. Tapia, et al., “Robust face tracking with locally-adaptive correlation filtering,” in Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (Proc. 19th Iberoamerican Congress, CIARP 2014, Puerto Vallarta, Mexico, November 2–5, 2014, Ed. by E. Bayro-Corrochano and E. Hancock (Int. Springer, Cham, 2014), pp. 925–932.Google Scholar
  14. 14.
    L. N. Gaxiola, V. H. Diaz-Ramirez, J. J. Tapia, and P. Garcia-Martinez, “Target tracking with dynamically adaptive correlation,” Opt. Commun. 365, 140–149 (2016).CrossRefGoogle Scholar
  15. 15.
    Z. Bahri and B. V. K. V. Kumar, “Generalized synthetic discriminant functions,” J. Opt. Soc. Am. A 5, 562–571 (1988).MathSciNetCrossRefGoogle Scholar
  16. 16.
    B. V. K. V. Kumar, J. D. Brasher, C. F. Hester et al., “Synthetic discriminant functions for recognition of images on the boundary of the convex hull of the training set,” Pattern Recogn. 27, 543–548 (1994).CrossRefGoogle Scholar
  17. 17.
    R. Patnaik and D. Casasent, “Kernel synthetic discriminant function (sdf), filters for fast object recognition,” Proc. SPIE 7340, 7340–13 (2009).Google Scholar
  18. 18.
    V. Kober, S. Martínez-Díaz, V. Karnaukhov, and I. A. Ovseyevich, “Distortion-invariant pattern recognition with local correlations,” Pattern Recogn. Image Anal. 21 (2), 188 (2011).CrossRefGoogle Scholar
  19. 19.
    E. M. Ramos-Michel and V. Kober, “Pattern recognition with an adaptive generalized sdf filter,” Proc. SPIE 6696, (2007).Google Scholar
  20. 20.
    R. A. Kerekes and B. V. K. V. Kumar, “Selecting a composite correlation filter design: a survey and comparative study,” Opt. Eng. 47, 47–18 (2008).Google Scholar
  21. 21.
    A. Ruchay and V. Kober, “Tracking of multiple objects with time-adjustable composite correlation filters,” Proc. SPIE 10396, 10396–6 (2017).Google Scholar
  22. 22.
    Z. Q. Wang, C. M. Cartwright, and W. A. Gillespie, “Real-time intensity correlation with a synthetic discriminant function filter,” J. Opt. Soc. Am. B 11, 1842–1847 (1994).CrossRefGoogle Scholar
  23. 23.
    Y.-S. Cheng, “Real-time shift-invariant optical pattern recognition,” Int. J. High Speed Electron. Syst. 8, 733–748 (1997).CrossRefGoogle Scholar
  24. 24.
    P. E. Gill, W. Murray, and M. H. Wright, Numerical Linear Algebra and Optimization (Addison-Wesley, Reading, 1991), Vol. 1.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscowRussia
  2. 2.Chelyabinsk State UniversityChelyabinskRussia
  3. 3.Center for Scientific Research and Higher Education at EnsenadaEnsenadaMexico

Personalised recommendations