Advertisement

Measuring Devices Based on Molecular-Electronic Transducers

  • A. S. Bugaev
  • A. N. Antonov
  • B. M. Agafonov
  • K. S. Belotelov
  • S. S. Vergeles
  • P. V. Dudkin
  • E. V. Egorov
  • I. V. Egorov
  • D. A. Zhevnenko
  • S. N. Zhabin
  • D. L. Zaitsev
  • T. V. Krishtop
  • A. V. Neeshpapa
  • V. G. Popov
  • V. V. Uskov
  • A. S. Shabalina
  • V. G. KrishtopEmail author
REVIEW

Abstract

The basic principles of operation of the sensors based on molecular-electronic transducers (METs) are described. The review of investigations of physical processes into MET and their operating characteristics are considered. Modern MET manufacturing technologies and the production methods and the new applications of planar microelectronic METs are discussed. An overview of devices and systems based on the METs is given.

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 18-07-01162.

REFERENCES

  1. 1.
    Introduction to Molecular Electronics, Ed. by N.S. Lidorenko (Energoatomizdat, Moscow, 1984) [in Russian].Google Scholar
  2. 2.
    V. S. Borovkov, B. M. Grafov, E. M. Dobrynin, et al., Electrochemical Transducers of Primary Information, Ed. by E. M. Dobrynin and P. D. Lukovtsev (Mashinostroenie, Moscow, 1969) [in Russian].Google Scholar
  3. 3.
    J. Newman and K. E. Thomas-Alyea, Electrochemical Systems (Wiley, Hoboken, 2004).Google Scholar
  4. 4.
    C. W. Larkam, J. Acoust. Soc. Am. 37, 664 (1965).CrossRefGoogle Scholar
  5. 5.
    V. M. Agafonov, V. G. Krishtop, and M. V. Safonov, Nano & Mikrosist. Tekh. 5 (6), 47 (2010).Google Scholar
  6. 6.
    A. S. Bugaev, V. M. Agafonov, V. G. Krishtop, A. N. Antonov and V. S. Veretin, “Seismic sensors for oil and gas complex on the molecular-electronics transduction in the solid state and liquid microsystems,” Oil & Gas Field Engineering, Special Issue No. 3: Results of 2012, 46–52 (2013) Issue, Results.Google Scholar
  7. 7.
    V. M. Agafonov, V. G. Krishtop, and I. V. Egorov, Devices & Syst. of Explor. Geophys. 43 (1), 39 (2013).Google Scholar
  8. 8.
    V. G. Krishtop, V. M. Agafonov, and A. S. Bugaev, Russ. J. Electrochem. 48, 746 (2012).CrossRefGoogle Scholar
  9. 9.
    I. S. Zakharov, V. A. Kozlov, and M. V. Safonov, Izv. Vyssh. Uchebn. Zaved., Elektron. No. 2, 40 (2003).Google Scholar
  10. 10.
    I. S. Zakharov and V. A. Kozlov, Russ. J. Electrochem. 39, 397 (2003).CrossRefGoogle Scholar
  11. 11.
    V. M. Agafonov and V. G. Krishtop, Mikrosistem. Tekh., No. 9, 40 (2004).Google Scholar
  12. 12.
    V. M. Agafonov and V. G. Krishtop, Russ. J. Electrochem. 40, 537 (2004).CrossRefGoogle Scholar
  13. 13.
    V. A. Kozlov and P. A. Tugaev, Russ. J. Electrochem. 32, 1325 (1996).Google Scholar
  14. 14.
    A. V. Babanin, V. A. Kozlov, and N. V. Pet’kin, Russ. J. Electrochem. 26, 601 (1990).Google Scholar
  15. 15.
    V. A. Kozlov, A.S. Korshak, and N. V. Pet’kin, Russ. J. Electrochem. 27 (1), 25 (1991).Google Scholar
  16. 16.
    I. S. Zakharov, Russ. J. Electrochem. 40, 626 (2004).Google Scholar
  17. 17.
    V. A. Kozlov and D. A. Terent’ev, Russ. J. Electrochem. 39, 401 (2003).CrossRefGoogle Scholar
  18. 18.
    V. A. Kozlov and D. A. Terent’ev, Russ. J. Electrochem. 38, 992 (2002).CrossRefGoogle Scholar
  19. 19.
    V. A. Kozlov and M. V. Safonov, Russ. J. Electrochem. 40, 460 (2004).CrossRefGoogle Scholar
  20. 20.
    I. S. Zakharov, Avtonom. Energetika, No. 15, 36 (2003).Google Scholar
  21. 21.
    I. S. Zakharov, Avtonom. Energetika, No. 13, 23 (2002).Google Scholar
  22. 22.
    V. M. Agafonov and A. A. Orel, Nano & Mikrosist. Tekh., No. 5, 50 (2008).Google Scholar
  23. 23.
    V. M. Agafonov, A. S. Bugaev, and A. A. Orel, Nano & Mikrosist. Tekh., No. 5, 32 (2009).Google Scholar
  24. 24.
    V. M. Volgin and A. D. Davydov, Russ. J. Electrochem. 48, 565 (2012).CrossRefGoogle Scholar
  25. 25.
    M. R. Vyaselev, A. G. Miftakhov, and E. I. Sultanov, Russ. J. Electrochem. 38, 208 (2002).CrossRefGoogle Scholar
  26. 26.
    M. V. Safonov, Issledovano v Rossii, 2433 (2004), [Elektron. Zh.]. http://zhurnal.ape.relarn.ru/articles/2004/228.pdf.Google Scholar
  27. 27.
    D. A. Bograchev and A. D. Davydov, Electrochim. Acta 47 (20), 3277 (2002).CrossRefGoogle Scholar
  28. 28.
    B. M. Grafov, Russ. J. Electrochem. 3, 935 (1967).Google Scholar
  29. 29.
    N. S. Lidorenko, Elektrotekhnika, No. 3, 13 (1965).Google Scholar
  30. 30.
    S. A. Martem’yanov, M. A. Vorotyntsev, and B. M. Grafov, Russ. J. Electrochem. 16, 714 (1979).Google Scholar
  31. 31.
    A. P. Grigin, B. I. Il’in, and N. V. Pet’kin, Russ. J. Electrochem. 15, 1 (1980).Google Scholar
  32. 32.
    V. A. Kozlov and D. A. Terent’ev, Mikrosistem. Tekh., No. 10, 41 (2004).Google Scholar
  33. 33.
    E. Ya. Klimenkov, B. M. Grafov, V. G. Levich, and I. V. Strizhevskii, Russ. J. Electrochem. 5, 202 (1969).Google Scholar
  34. 34.
    V. G. Krishtop and A. S. Shabalina, in Proc. XLVI Sci. Conf. MIPT, Dolgoprudnyi, 2003 (MIPT, Dolgoprudnyi, 2003), p. 43.Google Scholar
  35. 35.
    V. A. Kozlov and K. A. Sakharov, Basic Physics of Fluid and Solid-State Measuring Systems and Information-Processing Devices (MIPT, Moscow, 1994), p. 37.Google Scholar
  36. 36.
    M. V. Safonov, Convection Diffusion and Noise in Molecular-Electronic Structures, Cand. Sci. (Phys. Math.) Dissertation (MIPT, Dolgoprudnyi, 2007).Google Scholar
  37. 37.
    V. A. Kozlov and M. V. Safonov, Tech. Phys. 48, 1579 (2003).CrossRefGoogle Scholar
  38. 38.
    D. L. Zaitsev, P. V. Dudkin, and V. M. Agafonov, Izv. Vyssh. Uchebn. Zaved., Elektron., No. 5, 61 (2006).Google Scholar
  39. 39.
    D. L. Zaitsev and P. V. Dudkin, Avtonom. Energetika, No. 19, 62 (2005).Google Scholar
  40. 40.
    V. A. Kozlov, V. M. Agafonov, D. L. Zaitsev, and M. V. Safonov, RF Patent No. 2394246 Byull. Izobret., No. 19 (July 10, 2008).Google Scholar
  41. 41.
    Yu. V. Klyus and M. V. Safonov, in Contemporary Problems of Fundamental and Applied Sciences (Proc. XLIX Sci. Conf. MIPT, Moskva–Dolgoprudnyi, 2006 (MIPT, Dolgoprudnyi, 2006), p. 100.Google Scholar
  42. 42.
    E. V. Egorov, I. V. Egorov, and V. M. Agafonov, J. Sensors 2015 ID 512645 (2015).Google Scholar
  43. 43.
    V. M. Agafonov and D. L. Zaitsev, Tech. Phys. 55, 130 (2010).CrossRefGoogle Scholar
  44. 44.
    http://www.r-sensors.ru.Google Scholar
  45. 45.
    V. M. Agafonov, I. V. Egorov, and A. S. Shabalina, Seismic Instruments 49, 5 (2013).Google Scholar
  46. 46.
    E. Son, V. Agafonov, A. Bugaev, and V. Krishtop, in Proc. ASME 2nd Micro/Nanoscale Heat & Mass Transfer Int. Conf. (MNHMT 2009), Shanghai, China, Dec. 18–21, 2009 (Am. Soc. Mech. Engineers, New York, 2009).Google Scholar
  47. 47.
    I. P. Kasperovich and V. G. Krishtop, in Components of Domestic Radio Electronics (Proc. 1st Russian-Byelorussian Sci.-Tech. Conf., Nizhny Novgorod, Sep. 11–14, 2013) (Popov RNTO RES, Moscow, 2013), Vol. 1, p. 28.Google Scholar
  48. 48.
    A. S. Bugaev, V. M. Agafonov, M. S. Khairetdinov, and V. V. Kovalevskii, in Nigmatullin’s Readings (Proc. Int. Sci.-Tech. Conf., Kazan, Nov. 19–21, 2013) (Kazan. Gos. Tekh. Univ., Kazan’, 2013), p. 213.Google Scholar
  49. 49.
    V. M. Agafonov, A. S. Bugaev, V. G. Krishtop, et al., in Actual Problems in Geosciences (Proc. Russian-Polish Workshop, Oct. 15–16, 2008 (Schmidt Inst. of the Earth Physics, RAS, Shirshov Inst. of Oceanology, RAS, Moscow, 2008), p. 15.Google Scholar
  50. 50.
    A. S. Shabalina and V. G. Krishtop, “The precision seismometer based on planar molecular-electronic transducers,” in Nigmatullin’s Readings (Proc. Int. Sci.-Tech. Conf., Kazan, Nov. 19–21, 2013) (Kazan. Gos. Tekh. Univ., Kazan’, 2013), p. 183.Google Scholar
  51. 51.
    J. Peterson, Observation and Modeling of Seismic Background Noise. Open File Report, 93–322 (Albuquerque: US Dept. of Interior Geological Survey, Albuquerque 1993). https://pubs.er.usgs.gov/publication/ofr93322.Google Scholar
  52. 52.
    E. Wielandt, The New Manual of Seismological Observatory Practice (NMSOP-2), Ed. by P. Bormann (Deutsces GeoForshung Centrum GZF, Potsdam, 2012), Ch. 5. http://gfzpublic.gfz-potsdam.de/pubman/item/ escidoc:56076:4/component/escidoc:61055/Chapter_5_ rev1.pdf.Google Scholar
  53. 53.
    Programm for Array Seysmic Studies of the Continental Lithosphere (PASSCAL). N.Y.: Incorporate Research Institution for Seismology (IRIS), 2008). https:// www.iris.edu/hq/files/publications/passcal_review.pdf.Google Scholar
  54. 54.
    M. E. Templeton, IRIS Library of Nominal Response for Seismic Instruments. Incorporated Research Institutions for Seismology. Dataset (IRIS, Washinghton, 2017). https://doi.org/. doi 10.17611/S7159QGoogle Scholar
  55. 55.
    I. Koulakov, K. Jaxybulatov, N. M. Shapiro, et al., J. Volcanology & Geothermal Res. 285, 36 (2014).CrossRefGoogle Scholar
  56. 56.
    A. F. Kolos and D. V. Kryukovskii, Izv. Peterburg. Gos. Univ. Putei Soobshch., No. 2, 120 (2013).Google Scholar
  57. 57.
    J. M. Akris and A. T. Sambas, Bollettino di Geofisica Teorica ed Applicata 55, 561 (2014).Google Scholar
  58. 58.
    J. Papoulia, J. Makris, D. Ilinski, et al., in Proc. 9th Hellenic Symp. of Oceanography and Fisherie, Patra, May 13–16, 2009 (Hellenic Center for Marine Research, Athens, 2009), Vol. 1.Google Scholar
  59. 59.
    J. Papoulia, R. Nicolich, J. Makris, et al., Bollettino di Geofisica Teorica ed Applicata 55, 405 (2014).Google Scholar
  60. 60.
    D. G. Levchenko, Seismic Instruments 45 (4), 5 (2009).Google Scholar
  61. 61.
    D. G. Levchenko, Recording of Broadband Seismic Signals and Possible Strong Foreshocks on the Bottom of the Sea (Nauchnyi Mir, Moscow, 2005).Google Scholar
  62. 62.
    http://eqru.gsras.ru/stations/index.php?inc=netlist.Google Scholar
  63. 63.
    V. G. Korostelev, L. M. Savatyugin, and V. N. Smirnov, Problemy Arktiki i Antarktiki, No. 3 (101), 69 (2014).Google Scholar
  64. 64.
    V. A. Kozlov, Achievements of Modern Radioelectronics, Nos. 5–6, 138 (2004).Google Scholar
  65. 65.
    A. S. Shabalina, D. L. Zaitsev, E. V. Egorov, et al. Achievements of Modern Radioelectronics, No. 9, 33 (2014).Google Scholar
  66. 66.
    http://www.seismotronics.ru.Google Scholar
  67. 67.
    http://www.nordlab.com.Google Scholar
  68. 68.
    D. Zaitsev, V. Agafonov, E. Egorov, and A. Antonov, and A. Shabalina, Sensors., No. 11, 29378 (2015).Google Scholar
  69. 69.
    E. V. Egorov, V. A. Kozlov, and A. V. Yashkin, Russ. J. Electrochem. 43, No. 12, 1358 (2007).CrossRefGoogle Scholar
  70. 70.
    V. A. Kozlov and M. V. Safonov, Russ. J. Electrochem. 40, 460 (2004).CrossRefGoogle Scholar
  71. 71.
    V. M. Agafonov and A. S. Nesterov, Russ. J. Electrochem. 41, 880 (2005).CrossRefGoogle Scholar
  72. 72.
    V. G. Krishtop, Russ. J. Electrochem. 50, 350 (2014).CrossRefGoogle Scholar
  73. 73.
    V. M. Agafonov, K. A. Afanas’ev, A. N. Nikolaev, and A. V. Yashkin, Novye Prom. Tekhnol., No. 6, 68 (2010).Google Scholar
  74. 74.
    http://www.rotational-seismology.org/.Google Scholar
  75. 75.
    W. H. K. Lee, H. Igel, and M. D. Trifunac, Seismological Research Lett. 80, 479 (2009).CrossRefGoogle Scholar
  76. 76.
    W. H. K. Lee, J. R Evans, B.-S. Huang, et al. The New Manual of Seismological Observatory Practice (NMSOP-2), Ed. by P. Bormann (Deutsces GeoForshung Centrum GZF, Potsdam, 2012). http://gfzpublic.gfz-potsdam.de/ pubman/item/escidoc:43316:3/component/escidoc:56116/ IS_ 5.3_rev1.pdf.Google Scholar
  77. 77.
    A. M. Agafonov, E. V. Egorov, D. L. Zaitsev, et al., Giroskopiya i Navigatsiya, No. 3 (70), 14 (2010).Google Scholar
  78. 78.
    A. M. Agafonov, E. V. Egorov, and D. L. Zaitsev, Giroskopiya i Navigatsiya, No. 1(68), 72 (2010).Google Scholar
  79. 79.
    A. Neeshpapa, A. Antonov, and V. Agafonov, Sensors 15, 365 (2015).CrossRefGoogle Scholar
  80. 80.
    A. N. Antonov and D. L. Zaitsev, Giroskopiya i Navigatsiya, No. 2(69), 63 (2010).Google Scholar
  81. 81.
    D. L. Zaitsev and A. M. Panteleev, Giroskopiya i Navigatsiya, No. 2(65), 103 (2009).Google Scholar
  82. 82.
    N. Kapustian, G. Antonovskaya, V. Agafonov, et al., Seismic Behaviour and Design of Irregular and Complex Civil Structures, Ed. by M. De Lavan, M. De Lavan, (Springer-Verlag, Dordrecht, 2013), p. 353.Google Scholar
  83. 83.
    N. K. Kapustyan, G. N. Antonovskaya, and A. N. Klimov, “Monitoring of high-rise buildings as an important asset for the construction design,” Zhilishchnoe Stroitel’stvo (Housing Construction), No. 11, 6 (2013).Google Scholar
  84. 84.
    A. M. Agafonov, K. A. Afanas’ev, and A. V. Yashkin, Proc. of MIPT 5 (2/18), 142 (2013).Google Scholar
  85. 85.
    V. A. Kozlov, V. M. Agafonov, and P. V. Dudkin, in System Problem of Reliability, Quality, Information and Electronic Technologies (Proc. Int. Sci.-Tech. Conf., Moscow, Oct. 3–14, 2005) (Radio i Svyaz’, Moscow, 2005), p. 142.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. S. Bugaev
    • 1
    • 2
  • A. N. Antonov
    • 1
    • 3
  • B. M. Agafonov
    • 1
    • 4
  • K. S. Belotelov
    • 4
  • S. S. Vergeles
    • 1
    • 5
  • P. V. Dudkin
    • 1
  • E. V. Egorov
    • 1
    • 4
  • I. V. Egorov
    • 1
    • 4
  • D. A. Zhevnenko
    • 1
    • 6
    • 7
  • S. N. Zhabin
    • 1
  • D. L. Zaitsev
    • 1
    • 3
    • 4
  • T. V. Krishtop
    • 7
  • A. V. Neeshpapa
    • 1
    • 4
  • V. G. Popov
    • 1
    • 8
  • V. V. Uskov
    • 1
  • A. S. Shabalina
    • 1
    • 4
  • V. G. Krishtop
    • 7
    • 8
    Email author
  1. 1.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia
  2. 2.Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of SciencesMoscowRussia
  3. 3.NordLab LLCDolgoprudnyiRussia
  4. 4.R-sensors LLCDolgoprudnyiRussia
  5. 5.Landau Institute of Theoretical Physics, Russian Academy of SciencesChernogolovkaRussia
  6. 6.AO Molecular Electronics Research InstituteZelenogradRussia
  7. 7.Seismotronics LLCMoscowRussia
  8. 8.Institute of Microelectronics Technology and High Purity Materials, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations