Technical Physics Letters

, Volume 45, Issue 12, pp 1258–1261 | Cite as

Increasing the Photocurrent of a Ga(In)As Subcell in Multijunction Solar Cells Based on GaInP/Ga(In)As/Ge Heterostructure

  • S. A. MintairovEmail author
  • V. M. Emel’yanov
  • N. A. Kalyuzhnyi
  • M. Z. Shvarts
  • V. M. Andreev


Spectral characteristics of the Ga(In)As subcell of triple-junction GaInP/Ga(In)As/Ge solar cells have been experimentally and theoretically studied. It is established that the use of a wide-bandgap “window” layer with optimum thickness (100 nm for Ga0.51In0.49P, 110 nm for Al0.4Ga0.6As, and 115 nm for the Al0.8Ga0.2As) in Ga(In)As subcell allows the response photocurrent to be increased by about 0.5 mA/cm2; the change of material in the rear potential barrier of the GaInP subcell from Al0.53In0.47P to p+-Ga0.51In0.49P or AlGaAs allows the short-circuit current of Ga(In)As subcell to be additionally increased by about 0.8 mA/cm2; and the use of a wide-bandgap n++-Ga0.51In0.49P layer instead of n++-GaAs in the tunnel diode increases the photocurrent by about 1 mA/cm2.


solar cell mathematical modeling photocurrent subcell gallium arsenide. 



The authors declare that they have no conflict of interest.


  1. 1.
    R. R. King, D. C. Law, C. M. Fetzer, R. A. Sherif, K. M. Edmondson, S. Kurtz, G. S. Kinsey, H. L. Cotal, D. D. Krut, J. H. Ermer, and N. H. Karam, in Proceedings of the 20th EPVSEC, Barcelona, Spain,2005, p. 118.Google Scholar
  2. 2.
    R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, Appl. Phys. Lett. 90, 183516 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, Appl. Phys. Lett. 94, 223504 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    L. Barrutia, I. García, E. Barrigón, M. Ochoa, I. Lombardero, M. Hinojosa, P. Caño, J. Bautista, L. Cifuentes, I. Rey-Stolle, and C. Algora, in Proceedings of the 2018 Spanish Conference on Electron Devices (CDE) (IEEE, 2018), p. 8596996.
  5. 5.
    M. Theristis and T. S. O’Donovan, Solar Energy 118, 533 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    M. Heini, A. Aierken, Z. H. Li, X. F. Zhao, M. Sailai, X. B. Shen, Y. Xu, H. T. Liu, Y. D. Li, Q. Guo, and C. M. Liu, AIP Adv. 8, 105022 (2018).ADSCrossRefGoogle Scholar
  7. 7.
    J.-H. Kim, E. Y. Choi, B.-J. Kim, E. Han, and N. Park, Vacuum 162, 47 (2019).ADSCrossRefGoogle Scholar
  8. 8.
    M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovolt.: Res. Appl. 23, 1 (2015).CrossRefGoogle Scholar
  9. 9.
    M. A. Stan, P. R. Sharps, N. S. Fatemi, F. S. Spadafora, D. J. Aiken, and H. Q. Hou, in Proceedings of the 28th IEEE PV Specialists Conference (IEEE, 2000), p. 1374.Google Scholar
  10. 10.
    S. A. Mintairov, V. M. Andreev, V. M. Emel’yanov, N. A. Kalyuzhnyy, N. K. Timoshina, M. Z. Shvarts, and V. M. Lantratov, Semiconductors 44, 1084 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    N. A. Kalyuzhnyy, V. V. Evstropov, V. M. Lantratov, S. A. Mintairov, M. A. Mintairov, A. S. Gudovskikh, A. Luque, and V. M. Andreev, Int. J. Photoenergy 2014, 836284 (2014).CrossRefGoogle Scholar
  12. 12.
    F. Abelés, Ann. Phys. 12, 596 (1950).MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. M. Vasil’ev and A. P. Landsman, Semiconductor Photoconverters (Sovetskoe Radio, Moscow, 1971) [in Russian].Google Scholar
  14. 14.
    V. M. Andreev, V. M. Emelyanov, N. A. Kalyuzhnyy, V. M. Lantratov, S. A. Mintairov, M. Z. Shvarts, and N. K. Timoshina, in Proceedings of the 23rd EPVSEC, Valencia, Spain,2008, p. 375.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. A. Mintairov
    • 1
    Email author
  • V. M. Emel’yanov
    • 1
  • N. A. Kalyuzhnyi
    • 1
  • M. Z. Shvarts
    • 1
  • V. M. Andreev
    • 1
  1. 1.Ioffe Institute, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations