Advertisement

Technical Physics Letters

, Volume 45, Issue 12, pp 1270–1272 | Cite as

The Influence of Voltage Polarity on the Regime of Atmospheric-Pressure Glow Discharge Operation in Flows of Atomic and Molecular Gases

  • A. M. Astaf’evEmail author
  • O. M. Stepanova
  • M. E. Pinchuk
Article
  • 10 Downloads

Abstract

Electrical characteristics of atmospheric-pressure glow discharge at constant currents up to 40 mA in flows of atomic and molecular gases have been measured at volume flow rates varied within 0.5–5 L/min. It was found that the voltage drop on the discharge gap in molecular gases depends not only on the flow rate, but also on the polarity of applied voltage. As the gas flow rate increases, the discharge operation in oxygen and nitrogen becomes unstable and the voltage drop on discharge gap increases by several hundred volts. Both these effects are manifested much more strongly for a positive discharge voltage than for the negative voltage. In helium and argon flowing at a preset rate, the voltage polarity on electrodes does not influence the regime of discharge operation.

Keywords:

atmospheric-pressure glow discharge discharge in gas flow current–voltage characteristic atomic gases molecular gases. 

Notes

FUNDING

This study was supported in part by the Russian Foundation for Basic Research, project no. 17-58-04052.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    D. B. Graves, Phys. Plasmas 21, 080901 (2014).  https://doi.org/10.1063/1.4892534 ADSCrossRefGoogle Scholar
  2. 2.
    A. Fridman and G. Friedman, Plasma Medicine (Wiley, Chichester, 2013).Google Scholar
  3. 3.
    A. P. Semenov, B. B. Baldanov, Ts. V. Ranzhurov, Ch. N. Norboev, B. B. Namsaraev, V. B. Dambaev, S. V. Gomboeva, and L. R. Abidueva, Usp. Prikl. Fiz. 2, 229 (2014).Google Scholar
  4. 4.
    A. Kazak, A. Kirillov, L. Simonchik, O. Nezhvinskaya, and N. Dudchik, Plasma Med. 7 (2), 109 (2017).  https://doi.org/10.1615/PlasmaMed.2017019263 CrossRefGoogle Scholar
  5. 5.
    O. M. Stepanova, A. V. Kazak, A. M. Astafiev, M. E. Pinchuk, and L. V. Simonchik, Tech. Phys. Lett. 44, 841 (2018).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Nauka, Moscow, 1992).Google Scholar
  7. 7.
    V. S. Golubev and S. V. Pashkin, High Pressure Glow Discharge (Nauka, Moscow, 1990) [in Russian].Google Scholar
  8. 8.
    T. Ya. Asadullin and I. G. Galeev, J. Phys.: Conf. Ser. 927, 012003 (2017).  https://doi.org/10.1088/1742-6596/927/1/012003 CrossRefGoogle Scholar
  9. 9.
    K. P. Savkin, A. G. Nikolaev, E. M. Oks, G. Yu. Yushkov, and M. V. Shandrikov, Usp. Prikl. Fiz. 5 (6), 549 (2017).Google Scholar
  10. 10.
    V. I. Arkhipenko, A. A. Kirillov, Y. A. Safronau, and L. V. Simonchik, Eur. Phys. J. D 60, 455 (2010).  https://doi.org/10.1140/epjd/e2010-00266-5 ADSCrossRefGoogle Scholar
  11. 11.
    A. M. Astaf’ev and A. A. Kudryavtsev, Tech. Phys. Lett. 40, 816 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    W. Jiang, J. Tang, Y. Wang, W. Zhao, and Y. Duan, Sci. Rep. 4, 6323 (2014).  https://doi.org/10.1038/srep06323 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. M. Astaf’ev
    • 1
    Email author
  • O. M. Stepanova
    • 2
  • M. E. Pinchuk
    • 1
  1. 1.Institute for Electrophysics and Electric Power, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations