Advertisement

Technical Physics Letters

, Volume 45, Issue 10, pp 1063–1066 | Cite as

Heterobarrier Varactors with Nonuniformly Doped Modulation Layers

  • N. A. MaleevEmail author
  • M. A. Bobrov
  • A. G. Kuzmenkov
  • A. P. Vasil’ev
  • M. M. Kulagina
  • Yu. A. Guseva
  • S. A. Blokhin
  • V. M. Ustinov
Article
  • 4 Downloads

Abstract

Optimum shape of the capacitance–voltage (CV) characteristic is a critical parameter determining the efficiency of frequency multiplication in heterobarrier varactors (HBVs) operating in the millimeter and submillimeter frequency ranges. A numerical model for calculating the CV characteristics and leakage currents of HBV heterostructures with arbitrary composition and doping profiles has been verified on the basis of published and original experimental data. A specially designed HBV heterostructure with three undoped InAlAs/AlAs/InAlAs barriers surrounded by nonuniformly doped n-InGaAs modulation layers has been grown by molecular beam epitaxy on InP substrate. Prototype HBVs manufactured using the proposed heterostructure demonstrated a nearly cosine shape of the CV curve at bias voltages up to 2 V, increased overlap capacitance, and low leakage currents.

Keywords:

heterobarrier varactor capacitance–voltage characteristic epitaxy. 

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 16-29-03346_ofi_m.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    E. Kollberg and A. Rydberg, Electron. Lett. 25, 1696 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    A. Malko, T. Bryllert, J. Vukusic, and J. Stake, in Proceedings of the 24th International Conference on Indium Phosphide and Related Materials, Santa Barbara, USA, 2012, p. 92.Google Scholar
  3. 3.
    J. Stake, A. Malko, T. Bryllert, and J. Vukusic, Proc. IEEE 105, 1008 (2017).CrossRefGoogle Scholar
  4. 4.
    N. A. Maleev, V. A. Belyakov, A. P. Vasil’ev, M. A. Bobrov, S. A. Blokhin, M. M. Kulagina, A. G. Kuzmenkov, V. N. Nevedomskii, Yu. A. Guseva, S. N. Maleev, I. V. Ladenkov, E. L. Fefelova, A. G. Fefelov, and V. M. Ustinov, Semiconductors 51, 1431 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    N. A. Maleev, M. A. Bobrov, A. G. Kuz’menkov, A. P. Vasil’ev, M. M. Kulagina, S. N. Maleev, S. A. Blokhin, V. N. Nevedomskii, and V. M. Ustinov, Tech. Phys. Lett. 44, 862 (2018).ADSCrossRefGoogle Scholar
  6. 6.
    J. M. Duchamp, P. Ferrari, J. W. Tao, and D. Lippens, 2002 IEEE MTT-S Digest, 359 (2002).Google Scholar
  7. 7.
    A. Wettstein, A. Schenk, and W. Fichtner, IEEE Trans. Electron Dev. 48, 279 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    J. Carbonell, V. E. Boria, and D. Lippens, Microwave Opt. Technol. Lett. 50, 474 (2008).CrossRefGoogle Scholar
  9. 9.
    S. Gozu, T. Mozume, H. Kuwatsuka, and H. Ishikawa, Nanoscale Res. Lett. 7, 620 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. A. Maleev
    • 1
    Email author
  • M. A. Bobrov
    • 1
  • A. G. Kuzmenkov
    • 2
  • A. P. Vasil’ev
    • 2
  • M. M. Kulagina
    • 1
  • Yu. A. Guseva
    • 1
  • S. A. Blokhin
    • 1
  • V. M. Ustinov
    • 2
    • 3
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Submicron Heterostructures for Microelectronics, Research & Engineering Center, Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Saint Petersburg Electrotechnical University “LETI”St. PetersburgRussia

Personalised recommendations