Advertisement

Technical Physics Letters

, Volume 45, Issue 10, pp 994–996 | Cite as

Specific Features of the Current–Voltage Characteristic of Microdisk Lasers Based on InGaAs/GaAs Quantum Well-Dots

  • F. I. Zubov
  • E. I. Moiseev
  • G. O. Kornyshov
  • N. V. Kryzhanovskaya
  • Yu. M. Shernyakov
  • A. S. Payusov
  • M. M. Kulagina
  • N. A. Kalyuzhnyi
  • S. A. Mintairov
  • M. V. Maximov
  • A. E. ZhukovEmail author
Article
  • 8 Downloads

Abstract

Injection microlasers with an active region based on arrays of InGaAs/GaAs quantum well-dots, formed by deep etching, have been studied. The manner in which the current–voltage characteristic changes when the diameter microlaser is reduced shows that a nonelectrically conducting layer with thickness of about 1.5 μm is formed near the side surface, which leads to a decrease in the effective current flow area.

Keywords:

semiconductor laser microlaser quantum dots current–voltage characteristic. 

Notes

FUNDING

The study was supported by the Russian Foundation for Basic Research (project no. 16-29-03127-OFI-M) and Ministry of Science and Higher Education of the Russian Federation (3.9787.2017/8.9).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J.-M. Gerard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Hofling, M. Kamp, A. Forchel, and S. Reitzenstein, Appl. Phys. Lett. 100, 031111 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    L.-X. Zou, Y.-Zh. Huang, B.-W. Liu, X.-M. Lv, X.‑W. Ma, Y.-D. Yang, J.-L. Xiao, and Y. Du, Opt. Express 23, 2879 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuit, 2nd ed. (Wiley, Hoboken, NJ, 2012), Sect. 4.5.2.Google Scholar
  4. 4.
    E. I. Moiseev, N. V. Kryzhanovskaya, F. I. Zubov, M. S. Mikhailovskii, A. N. Abramov, M. V. Maximov, M. M. Kulagina, Yu. A. Guseva, D. A. Livshits, and A. E. Zhukov, Semiconductors (2019, in press).Google Scholar
  5. 5.
    N. V. Kryzhanovskaya, E. I. Moiseev, Yu. V. Kudashova, F. I. Zubov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, Yu. M. Zadiranov, D. A. Livshits, M. V. Maximov, and A. E. Zhukov, Electron. Lett. 51, 1354 (2015).CrossRefGoogle Scholar
  6. 6.
    D. Ouyang, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, A. E. Zhukov, S. S. Mikhrin, and V. M. Ustinov, Semicond. Sci. Technol. 18 (12), L53 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    E. Moiseev, N. Kryzhanovskaya, M. Maximov, F. Zubov, A. Nadtochiy, M. Kulagina, Yu. Zadiranov, N. Kalyuzhnyy, S. Mintairov, and A. Zhukov, Opt. Lett. 43, 4554 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    N. V. Kryzhanovskaya, E. I. Moiseev, F. I. Zubov, A. M. Mozharov, M. V. Maximov, N. A. Kalyuzhnyy, S. A. Mintairov, M. M. Kulagina, S. A. Blokhin, K. E. Kudryavtsev, A. N. Yablonskiy, S. V. Morozov, Yu. Berdnikov, S. Rouvimov, and A. E. Zhukov, Photon. Res. 7, 664 (2019).CrossRefGoogle Scholar
  9. 9.
    D. P. Bour and A. Rosen, J. Appl. Phys. 66, 2813 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • F. I. Zubov
    • 1
  • E. I. Moiseev
    • 1
  • G. O. Kornyshov
    • 1
  • N. V. Kryzhanovskaya
    • 1
  • Yu. M. Shernyakov
    • 2
  • A. S. Payusov
    • 2
  • M. M. Kulagina
    • 2
  • N. A. Kalyuzhnyi
    • 2
  • S. A. Mintairov
    • 2
  • M. V. Maximov
    • 1
  • A. E. Zhukov
    • 1
    Email author
  1. 1.St. Petersburg National Research Academic University, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Ioffe Physical Technical Institute, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations