Advertisement

Technical Physics Letters

, Volume 45, Issue 10, pp 963–966 | Cite as

Direct Measurements of the Dynamics of the Electrocaloric Response of Ferroelectrics under Conditions of Arbitrary Heat Transfer

  • G. Yu. SotnikovaEmail author
  • G. A. Gavrilov
  • A. A. Kapralov
  • E. P. Smirnova
Article
  • 3 Downloads

Abstract

We have a new, effective method for direct measurements of the electrocaloric effect under arbitrary heat transfer conditions. The accuracy and reliability of measurements of the dynamics of changes in the sample temperature are due to the use of photodiode temperature sensors of the mid-IR range with the possibility of their in situ calibration.

Keywords:

electrocaloric effect IR temperature sensors ferroelectric relaxers. 

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 18-02-00394.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Y. Liu, J. F. Scott, and B. Dkhil, Appl. Phys. Rev. 3, 031102 (2016).  https://doi.org/10.1063/1.4958327 ADSCrossRefGoogle Scholar
  2. 2.
    S. Pandya, J. Wilbur, J. Kim, R. Gao, A. Dasgupta, C. Dames, and L. W. Martin, Nat. Mater. 17, 432 (2018).  https://doi.org/10.1038/s41563-018-0059-8 ADSCrossRefGoogle Scholar
  3. 3.
    T. Zhang, X.-S. Qian, H. Gu, Y. Hou, and Q. M. Zhang, Appl. Phys. Lett. 110, 243503 (2017).  https://doi.org/10.1063/1.4986508 ADSCrossRefGoogle Scholar
  4. 4.
    Electrocaloric Materials: New Generation of Cooler, Ed. by T. Correia and Q. Zhang (Springer, Berlin, Heidelberg, 2013).  https://doi.org/10.1007/978-3-642-40264-7 Google Scholar
  5. 5.
    U. Plaznik, A. Kitanovski, B. Rožič, B. Malič, H. Uršič, S. Drnovšek, J. Cilenšek, M. Vrabelj, A. Poredoš, and Z. Kutnjak, Appl. Phys. Lett. 106, 043903 (2015). https://doi.org/10.1063/1.4907258 ADSCrossRefGoogle Scholar
  6. 6.
    M. Sanlialp, V. V. Shvartsman, R. Faye, M. O. Karabasov, C. Molin, S. Gebhardt, E. Defay, and D. C. Lupascu, Rev. Sci. Instrum. 89, 034903 (2018).  https://doi.org/10.1063/1.4997155 ADSCrossRefGoogle Scholar
  7. 7.
    M. K. Rokosz, PhD Thesis (Imperial College, London, 2016). spiral.imperial.ac.uk/handle/10044/1/47999.Google Scholar
  8. 8.
    V. S. Bondarev, E. A. Mikhaleva, I. N. Flerov, and M. V. Gorev, Phys. Solid State 59, 1118 (2017).  https://doi.org/10.21883/FTT.2017.06.44482.421 ADSCrossRefGoogle Scholar
  9. 9.
    R. Faye, H. Strozyk, B. Dkhil, and E. Defay, J. Phys. D: Appl. Phys. 50, 464002 (2017).  https://doi.org/10.1088/1361-6463/aaa7c4/meta ADSCrossRefGoogle Scholar
  10. 10.
    S. E. Aleksandrov, G. A. Gavrilov, A. A. Kapralov, K. L. Muratikov, and G. Yu. Sotnikova, Tech. Phys. Lett. 43, 684 (2017).  https://doi.org/10.21883/PJTF.2017.14.44825.16805 ADSCrossRefGoogle Scholar
  11. 11.
    P. N. Brunkov, N. D. Il’inskaya, S. A. Karandashev, A. A. Lavrov, B. A. Matveev, M. A. Remennyi, N. M. Stus’, and A. A. Usikova, Infrared Phys. Technol. 73, 232 (2015).  https://doi.org/10.1016/j.infrared.2015.09.017 ADSCrossRefGoogle Scholar
  12. 12.
    S. E. Aleksandrov, G. A. Gavrilov, A. A. Kapralov, and G. Y. Sotnikova, in Proceedings of the 4th International Conference on Photonics and Information Optics, Phys. Proc. 73, 177 (2015).Google Scholar
  13. 13.
    E. P. Smirnova, G. Yu. Sotnikova, N. V. Zaitseva, A. A. Kapralov, G. A. Gavrilov, and A. V. Sotnikov, Phys. Solid State 60, 2006 (2018).  https://doi.org/10.21883/FTT.2018.10.46524.111 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. Yu. Sotnikova
    • 1
    Email author
  • G. A. Gavrilov
    • 1
  • A. A. Kapralov
    • 1
  • E. P. Smirnova
    • 1
  1. 1.Ioffe Physical Technical Institute, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations