Technical Physics Letters

, Volume 45, Issue 10, pp 989–993 | Cite as

Generation of Giant Amplitude Pulses in a Klystron Chaos Auto-Oscillator

  • S. V. GrishinEmail author
  • B. S. Dmitriev
  • V. N. Skorokhodov


The presented experimental results demonstrate that microwave pulses of giant amplitude are generated in a klystron generator operating in the self-excited mode of chaotic oscillations. The auto-oscillator is assembled using a noisetron scheme that contains two five-cavity floating-drift klystrons serially connected in a ring, one of which operates in the mode of linear signal amplification (the linear klystron) and the other works in the mode of nonlinear signal amplification (the nonlinear klystron). It is established that, at a certain value of the beam current of a nonlinear klystron, intermittency of chaos–chaos type is realized in the auto-oscillation system in the form of chaotic sequences of microwave pulses of giant amplitude formed over the chaotic amplitude background. This type of intermittency is caused by the amplitude bistability of the nonlinear floating-drift klystron.


noise generator floating-drift klystron chaos bistability intermittency. 



We thank D.I. Trubetskov and O.I. Moskalenko for discussions of the obtained results and precious remarks.


This work was supported by the Russian Foundation for Basic Research, project no. 18-02-00666.


The authors declare that they have no conflict of interest.


  1. 1.
    Yu. V. Anisimova, G. M. Vorontsov, N. N. Zalogin, V. Ya. Kislov, and E. A. Myasin, Radiotekhnika, No. 2, 19 (2000).Google Scholar
  2. 2.
    V. Ya. Kislov, E. A. Myasin, and E. V. Bogdanov, USSR Inventor’s Certificate No. 1125735, Byull. Izobret., No. 43 (1984).Google Scholar
  3. 3.
    B. S. Dmitriev, Yu. D. Zharkov, N. M. Ryskin, and A. M. Shigaev, J. Commun. Technol. Electron. 46, 561 (2001).Google Scholar
  4. 4.
    B. S. Dmitriev, Yu. D. Zharkov, D. V. Klokotov, and N. M. Ryskin, Tech. Phys. 48, 901 (2003).CrossRefGoogle Scholar
  5. 5.
    B. S. Dmitriev, Yu. D. Zharkov, V. N. Skorokhodov, P. Yu. Semenovykh, and A. A. Biryukov, Tech. Phys. 50, 1628 (2005).CrossRefGoogle Scholar
  6. 6.
    B. S. Dmitriev, Yu. D. Zharkov, V. N. Skorokhodov, and A. M. Genshaft, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din. 15 (3), 52 (2007).Google Scholar
  7. 7.
    S. V. Grishin, B. S. Dmitriev, Yu. D. Zharkov, R. A. Manyshev, and V. N. Skorokhodov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din. 20 (5), 137 (2012).Google Scholar
  8. 8.
    N. S. Ginzburg, G. G. Denisov, M. N. Vilkov, I. V. Zotova, and A. S. Sergeev, Phys. Plasmas 23, 050702 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    N. S. Ginzburg, G. G. Denisov, M. N. Vilkov, A. S. Sergeev, I. V. Zotova, S. V. Samsonov, and S. V. Mishakin, Phys. Plasmas 24, 023103 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    N. S. Ginzburg, R. M. Rozental, A. S. Sergeev, A. E. Fedotov, I. V. Zotova, and V. P. Tarakanov, Phys. Rev. Lett. 119, 034801 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    V. S. Anishchenko, V. V. Astakhov, T. E. Vadivasova, A. B. Neiman, G. I. Strelkova, and L. Shimanskii-Gaier, Nonlinear Effects in Chaotic and Stochastic Systems (Inst. Komp. Issled., Moscow, Izhevsk, 2003) [in Russian].Google Scholar
  12. 12.
    M. K. Kamilov, K. M. Aliev, Kh. O. Ibragimov, and N. S. Abakarova, Tech. Phys. Lett. 30, 141 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    R. M. Rozental, I. V. Zotova, N. S. Ginzburg, A. S. Sergeev, and V. P. Tarakanov, IEEE Trans. Plasma Sci. 46, 2470 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    R. M. Rozental’, O. B. Isaeva, N. S. Ginzburg, I. V. Zotova, A. G. Rozhnev, V. P. Tarakanov, and A. S. Sergeev, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din. 26 (3), 78 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. V. Grishin
    • 1
    Email author
  • B. S. Dmitriev
    • 1
  • V. N. Skorokhodov
    • 1
  1. 1.Chernyshevskii Saratov National Research State UniversitySaratovRussia

Personalised recommendations