Advertisement

Technical Physics Letters

, Volume 45, Issue 5, pp 511–514 | Cite as

Experimental Observation of Chaotic Generation at 1.5% Spectral Width in a Gyrotron under Large Supercriticality Conditions

  • R. M. Rozental
  • A. E. Fedotov
  • N. S. GinzburgEmail author
  • I. V. Zotova
  • A. B. Volkov
  • S. V. Samsonov
  • E. S. Semenov
  • A. S. Sergeev
Article
  • 5 Downloads

Abstract

A complex chaotic dynamics in a gyrotron was experimentally observed under conditions of high supercriticality corresponding to 1000–1500-fold excess of the beam current parameter over the starting value. At electron beam currents typical of gyrotron test setups, this excess has been achieved by a transition to excitation of the lowest mode of a cylindrical waveguide. Chaotic generation regimes were observed in a 33 GHz frequency range with a spectral width of 500 MHz and record narrow relative width below 1.5% These results imply considerable progress in comparison to previous experiments with gyrotron type devices and are in good agreement with theoretical analysis based on a system of averaged evolution equations derived with allowance for finiteness of the transit time of electrons via the interaction space.

Notes

REFERENCES

  1. 1.
    T. Nagatsuma and H.-J. Song, Handbook of Terahertz Technologies: Devices and Applications (CRC, Boca Raton, FL, 2015), p. 375.Google Scholar
  2. 2.
    E. A. Myasin, Tech. Phys. Lett. 38, 96 (2012). https://doi.org/10.1134/S1063785012010270ADSCrossRefGoogle Scholar
  3. 3.
    N. Ehsan, J. Piepmeier, M. Solly, S. Macmurphy, J. Lucey, and E. Wollack, in Proceedings of the 45th European Microwave Conference (Paris, France, 2015), p. 853.  https://doi.org/10.1109/EuMC.2015.7345898
  4. 4.
    A. E. Hramov, A. A. Koronovskiy, S. A. Kurkin, M. Gaifulin, V. Makarov, V. Maximenko, N. V. Alexeeva, K. N. Alekseev, M. T. Greenaway, T. M. Fromhold, A. Patane, F. V. Kusmartsev, O. I. Moskalenko, and A. G. Balanov, in Proceedings of the International Symposium on Nonlinear Theory and Its Applications, Kowloon, Hong Kong, China, 2015, p. 526.Google Scholar
  5. 5.
    B. F. Yefimov, G. P. Kulemin, and V. A. Rakityansky, Int. J. Infrared Millimeter Waves 20, 1683 (1999).  https://doi.org/10.1023/A:1021798923390 CrossRefGoogle Scholar
  6. 6.
    H. Liu, N. Li, and Q. Zhao, Appl. Opt. 54, 4380 (2015).  https://doi.org/10.1364/AO.54.004380 ADSCrossRefGoogle Scholar
  7. 7.
    J. Booske and C. Paoloni, J. Phys. D: Appl. Phys. 50, 043001 (2017).  https://doi.org/10.1088/1361-6463/50/4/043001 ADSCrossRefGoogle Scholar
  8. 8.
    T. H. Chang, S. H. Chen, L. R. Barnett, and K. R. Chu, Phys. Rev. Lett. 87, 064802 (2001).  https://doi.org/10.1103/PhysRevLett.87.064802 ADSCrossRefGoogle Scholar
  9. 9.
    S. Alberti, J.-Ph. Ansermet, A. Avramides, F. Braunmueller, P. Cuanillon, J. Dubray, D. Fasel, J.-Ph. Hogge, A. Macor, E. de Rijk, M. Silva, M. Q. Tran, T. M. Tran, and Q. Vuillemin, Phys. Plasmas 19, 123102 (2012).  https://doi.org/10.1063/1.4769033 ADSCrossRefGoogle Scholar
  10. 10.
    R. M. Rozental’, N. S. Ginzburg, A. S. Sergeev, I. V. Zotova, A. E. Fedotov, and V. P. Tarakanov, Tech. Phys. 62, 1562 (2017). https://doi.org/10.1134/S106378421710019XCrossRefGoogle Scholar
  11. 11.
    N. S. Ginzburg, R. M. Rozental, A. S. Sergeev, A. E. Fedotov, I. V. Zotova, and V. P. Tarakanov, Phys. Rev. Lett. 119, 034801 (2017).  https://doi.org/10.1103/PhysRevLett.119.034801 ADSCrossRefGoogle Scholar
  12. 12.
    N. S. Ginzburg, G. S. Nusinovich, and N. A. Zavolsky, Int. J. Electron. 61, 881 (1986).  https://doi.org/10.1080/00207218608920927 CrossRefGoogle Scholar
  13. 13.
    V. L. Bratman, G. G. Denisov, G. I. Kalynova, V. N. Manuilov, M. M. Ofitserov, S. V. Samsonov, and A. B. Volkov, in Proceedings of the IEEE International Vacuum Electronics Conference, Monterey, USA, 2002, p. 359.  https://doi.org/10.1109/IVELEC.2002.999422
  14. 14.
    R. M. Rozental, I. V. Zotova, N. S. Ginzburg, A. S. Sergeev, and V. P. Tarakanov, J. Infrared Millimeter Terahertz Waves 40, 150 (2019).  https://doi.org/10.1007/s10762-018-0561-8 CrossRefGoogle Scholar
  15. 15.
    V. P. Tarakanov, EPJ Web Conf. 149, 04024 (2017).  https://doi.org/10.1051/epjconf/20171490 CrossRefGoogle Scholar
  16. 16.
    H.-J. Song, N. Shimizu, T. Furuta, A. Wakatsuki, and T. Nagatsuma, Appl. Phys. Lett. 93, 241113 (2008).  https://doi.org/10.1063/1.3039819 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • R. M. Rozental
    • 1
  • A. E. Fedotov
    • 1
  • N. S. Ginzburg
    • 1
    Email author
  • I. V. Zotova
    • 1
  • A. B. Volkov
    • 1
  • S. V. Samsonov
    • 1
  • E. S. Semenov
    • 1
  • A. S. Sergeev
    • 1
  1. 1.Institute of Applied Physics, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations