Advertisement

Technical Physics Letters

, Volume 45, Issue 5, pp 489–493 | Cite as

Using Higher-Order Modes of Chalcogenide Optical Fibers for the Optimization of Evanescent Wave Mid-IR Spectroscopy

  • S. V. KorsakovaEmail author
  • E. A. Vinogradova
  • E. A. Romanova
  • V. S. Shiryaev
Article
  • 4 Downloads

Abstract

On the basis of a new theoretical approach that is proposed for solving tasks of the evanescent wave mid-IR spectroscopy, it is shown that the dispersion properties of higher-order modes of a multimode chalcogenide optical fiber partly immersed into an absorbing medium can be used for the creation of fiber-optic devices combining the functions of a supercontinuum generator and a sensing element for mid-IR spectroscopic sensors. The propagation of radiation in higher-order modes makes it possible to control the position of zero dispersion of group velocity and to generate supercontinuum with near-IR pumping. Using higher-order evanescent modes in a sensing element, it will be possible to increase its sensitivity and expand the dynamic range.

Notes

REFERENCES

  1. 1.
    V. S. Shiryaev and M. F. Churbanov, J. Non-Cryst. Solids 377, 225 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    E. A. Romanova, S. Korsakova, M. Komanec, T. Nemecek, A. Velmuzhov, M. Sukhanov, and V. S. Shiryaev, IEEE J. Sel. Top. Quant. Electron 23 (2), 1 (2017).CrossRefGoogle Scholar
  3. 3.
    S. Korsakova, E. Romanova, A. Velmuzhov, T. Kote-reva, M. Sukhanov, and V. S. Shiryaev, J. Non-Cryst. Solids 475, 38 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    S. V. Korsakova, E. A. Romanova, A. P. Velmuzhov, T. V. Kotereva, M. V. Sukhanov, and V. S. Shiryaev, Opt. Spectrosc. 125, 416 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    J. Heo, M. Rodrigues, S. J. Saggese, and G. H. Sigel, Appl. Opt. 30, 3944 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    M. Katz, A. Katzir, I. Schnitzer, and A. Bornstein, Appl. Opt. 33, 5888 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    J. S. Sanghera, F. H. Kung, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, Appl. Opt. 33, 6315 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, J. Am. Ceram. Soc. 78, 2198 (1995).CrossRefGoogle Scholar
  9. 9.
    I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, Opt. Express 22, 19169 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Nat. Photon. 8, 830 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, Opt. Express 23, 3282 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    N. Wang, M. S. Habib, F. Jia, G. Li, and R. Amezcua-Correa, in Proceedings of the Conference 2018 IEEE Photonics Society Summer Topical Meeting Series SUM (IEEE, 2018), p. 135.Google Scholar
  13. 13.
    A. Zakery and S. R. Elliot, Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer, Berlin, Heidelberg, New York, 2007).Google Scholar
  14. 14.
    W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).Google Scholar
  15. 15.
    G. S. Agrawal, Nonlinear Fiber Optics (Elsevier, Amsterdam, 2012).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. V. Korsakova
    • 1
    Email author
  • E. A. Vinogradova
    • 1
  • E. A. Romanova
    • 1
  • V. S. Shiryaev
    • 2
  1. 1.Saratov State University named after N.G.ChernyshevskySaratovRussia
  2. 2.G.G. Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations