Advertisement

Technical Physics Letters

, Volume 45, Issue 5, pp 467–470 | Cite as

Low-Threshold Field Electron Emission from Two-Dimensional Carbon Structures

  • A. P. VoznyakovskiiEmail author
  • G. N. Fursey
  • A. A. Voznyakovskii
  • M. A. Polyakov
  • A. Yu. Neverovskaya
  • I. I. Zakirov
Article
  • 2 Downloads

Abstract

Particles of multilayer graphene obtained by the method of self-propagating high-temperature synthesis are proposed as an active cathode component for field electron emission. It is shown that this material makes it possible to implement a new technology for creating efficient field emitters with a developed surface. It has been established that the effect of low-threshold field electron emission is observed in this material. In pulsed electric fields, the possibility of obtaining high-current electron beams with currents up to hundreds of amperes has been confirmed.

Notes

REFERENCES

  1. 1.
    G. N. Fursei, M. A. Polyakov, A. A. Kantonistov, A. M. Yafyasov, B. S. Pavlov, and V. B. Bozhevol’nov, Tech. Phys. 58, 845 (2013).  https://doi.org/10.1134/S1063784213060121 CrossRefGoogle Scholar
  2. 2.
    G. Fursey, M. Polyakov, and I. Zakirov, in Proceedings of the 2016 14th International Baltic Conference on Atomic Layer Deposition (BALD) (IEEE, 2016), p. 47.  https://doi.org/10.1109/BALD.2016.7886535
  3. 3.
    D. A. Bandurin, S. Mingels, V. I. Kleshch, D. Lutzenkirchen-Hecht, G. Muller, and A. N. Obraztsov, Appl. Phys. Lett. 106, 233112 (2015).  https://doi.org/10.1063/1.4922550 ADSCrossRefGoogle Scholar
  4. 4.
    A. V. Arkhipov, P. G. Gabdullin, N. M. Gnuchev, S. N. Davydov, S. I. Krel’, and B. A. Loginov, Nauch.-Tekhn. Vedom. SPbGPU, Fiz.-Mat. Nauki, No. 1, 77 (2015).Google Scholar
  5. 5.
    A. P. Voznyakovskii, A. Yu. Neverovskaya, Ja. A. Otvalko, E. V. Gorelova, and A. N. Zabelina, Nanosyst.: Phys., Chem., Math. 9, 125 (2018).  https://doi.org/10.17586/2220-8054-2018-9-1-125-128 Google Scholar
  6. 6.
    V. V. Azatyan, Russ. Chem. Rev. 68, 1021 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558 (2007).  https://doi.org/10.1016/j.carbon.2007.02.034 CrossRefGoogle Scholar
  8. 8.
    L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewiczc, B. Mierzwa, J. Zemek, P. Jiricek, and I. Bieloshapka, J. Electron Spectr. Rel. Phenom. 195, 145 (2014).  https://doi.org/10.1016/j.elspec.2014.07.003 CrossRefGoogle Scholar
  9. 9.
    A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).  https://doi.org/10.1103/PhysRevLett.97.187401 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. P. Voznyakovskii
    • 1
    • 2
    Email author
  • G. N. Fursey
    • 3
  • A. A. Voznyakovskii
    • 4
  • M. A. Polyakov
    • 3
  • A. Yu. Neverovskaya
    • 2
  • I. I. Zakirov
    • 3
  1. 1.St. Petersburg State Institute of TechnologySt. PetersburgRussia
  2. 2.Lebedev Research Institute of Synthetic RubberSt. PetersburgRussia
  3. 3.Surface Physics and Electronics Research Center, Bonch-Bruevich St. Petersburg State University of TelecommunicationsSt. PetersburgRussia
  4. 4.Ioffe Physical Technical Institute, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations