Technical Physics Letters

, Volume 45, Issue 5, pp 457–460 | Cite as

The Electric Conductivity of Nanofluids with Metal Particles

  • V. Ya. RudyakEmail author
  • A. V. Minakov
  • M. I. Pryazhnikov


The electric conductivity is experimentally studied in nanofluids based on water and ethylene glycol containing copper and aluminum particles. Other properties, such as heat conductivity and rheological characteristics, were evaluated as well. The electric conductivity of nanofluids is shown to increase almost linearly with a nanoparticle concentration, but, unlike the heat conductivity, a gain in electric conductivity is due to a decrease in particle size. In this respect, the mechanisms of electric conductivity and heat conductivity are assumed to have the fundamentally different nature.



  1. 1.
    V. Ya. Rudyak and A. V. Minakov, Current Problems of Micro- and Nanofluidics (Nauka, Novosibirsk, 2016) [in Russian].Google Scholar
  2. 2.
    E. V. Timofeeva, D. S. Smith, and W. Yu, Nanotecnology 21, 215703 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    V. Ya. Rudyak and S. L. Krasnolutskii, Tech. Phys. 60, 798 (2015).CrossRefGoogle Scholar
  4. 4.
    D. K. Devendiran and V. A. Amirtham, Renewable Sustainable Energy Rev. 60, 21 (2016).CrossRefGoogle Scholar
  5. 5.
    P. K. Das, N. Islam, A. K. Santra, and R. Ganguly, J. Mol. Liq. 237, 304 (2017).CrossRefGoogle Scholar
  6. 6.
    V. Rudyak and A. V. Minakov, Eur. Phys. J. E 41, 15 (2018).CrossRefGoogle Scholar
  7. 7.
    V. Ya. Rudyak and S. L. Krasnolutskii, Tech. Phys. 62, 1456 (2017).CrossRefGoogle Scholar
  8. 8.
    M. I. Pryazhnikov, A. V. Minakov, V. Rudyak, and D. V. Guzei, Int. J. Heat Mass Transfer 104, 1275 (2017).CrossRefGoogle Scholar
  9. 9.
    J. M. Munyalo and X. Zhang, J. Mol. Liq. 265, 77 (2018).CrossRefGoogle Scholar
  10. 10.
    A. Einstein, Ann. Phys. 19, 289 (1906).CrossRefGoogle Scholar
  11. 11.
    G. K. Batchelor, J. Fluid Mech. 83, 97 (1977).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    J. C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon, Oxford, 1881).zbMATHGoogle Scholar
  13. 13.
    M. Dong, L. P. Shen, H. Wang, H. B. Wang, and J. Miao, J. Nanomater. 2013, 842963 (2013).CrossRefGoogle Scholar
  14. 14.
    K. G. Kalpana Sarojini, S. V. Manoj, P. K. Singh, and T. Predeep, Coll. Surf., A 417, 39 (2013).Google Scholar
  15. 15.
    S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Minakov, V. Ya. Rudyak, D. V. Guzei, M. I. Pryazhnikov, and A. S. Lobasov, J. Eng. Phys. Thermophys. 88 (1), 149 (2015).CrossRefGoogle Scholar
  17. 17.
    V. Ya. Rudyak, A. A. Belkin, E. A. Tomilina, and V. V. Egorov, Def. Diff. Forum 273–276, 566 (2008).Google Scholar
  18. 18.
    H. Tabuteau, F. K. Oppong, J. R. de Bruyn, and P. Coussot, Europhys. Lett. 78, 68007 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. Ya. Rudyak
    • 1
    • 2
    • 3
    Email author
  • A. V. Minakov
    • 1
    • 2
  • M. I. Pryazhnikov
    • 1
    • 2
  1. 1.Novosibirsk State University of Architecture and Civil EngineeringNovosibirskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations