Advertisement

Technical Physics Letters

, Volume 45, Issue 5, pp 439–442 | Cite as

The Entropy Maximum in Scale-Invariant Processes with 1/f  α Power Spectrum: the Effect of White Noise Anisotropy

  • V. P. KoverdaEmail author
  • V. N. Skokov
Article
  • 8 Downloads

Abstract

Extreme fluctuations are simulated by a system of nonlinear stochastic equations describing the interacting phase transitions. Random 1/α processes are formed under the action of anisotropic white noise with α-dependence of the power spectra on frequency and exponent α ranging from 0.7 to 1.7. It is shown that fluctuations with 1/α power spectra in the studied range of α correspond to the entropy maximum, which indicates the stability of such processes at different values of exponent α.

Notes

REFERENCES

  1. 1.
    Yu. L. Klimontovich, The Statistical Theory of Open Systems (Yanus, Moscow, 1995) [in Russian].CrossRefzbMATHGoogle Scholar
  2. 2.
    M. B. Weissman, Rev. Mod. Phys. 60, 537 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38, 364 (1988).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    H. J. Jensen, Self-Organized Criticality (Cambridge Univ. Press, New York, 1998).CrossRefzbMATHGoogle Scholar
  5. 5.
    B. Mandelbrot, The Fractal Geometry of Nature (Inst. Komp’yut. Issled., Moscow, 2002; Freeman, San Francisco, 1982).Google Scholar
  6. 6.
    A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 299 (1941).ADSGoogle Scholar
  7. 7.
    V. P. Koverda and V. N. Skokov, Phys. A (Amsterdam, Neth.) 346, 203 (2005).Google Scholar
  8. 8.
    V. P. Koverda and V. N. Skokov, Tech. Phys. 56, 1539 (2011).CrossRefGoogle Scholar
  9. 9.
    V. P. Koverda and V. N. Skokov, Phys. A (Amsterdam, Neth.) 391, 21 (2012).Google Scholar
  10. 10.
    A. G. Bashkirov, Theor. Math. Phys. 149, 1559 (2006).CrossRefGoogle Scholar
  11. 11.
    E. W. Montroll and M. F. Shlesinger, J. Stat. Phys. 32, 209 (1983).ADSCrossRefGoogle Scholar
  12. 12.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    V. P. Koverda and V. N. Skokov, Phys. A (Amsterdam, Neth.) 511, 263 (2018).Google Scholar
  14. 14.
    A. Renyi, Probability Theory (North-Holland, Amsterdam, 1970).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Thermal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations