Advertisement

Technical Physics Letters

, Volume 45, Issue 5, pp 471–474 | Cite as

Formation of Highly Conducting Optically Transparent Films with Multigraphene Structure via Carbonization of Polyimide Langmuir–Blodgett Films

  • S. I. GoloudinaEmail author
  • V. V. Luchinin
  • V. M. Pasyuta
  • A. N. Smirnov
  • D. A. Kirilenko
  • E. N. Sevost’yanov
  • G. A. Konoplev
  • V. V. Andryushkin
  • V. P. Sklizkova
  • I. V. Gofman
  • V. M. Svetlichnyi
  • V. V. Kudryavtsev
Article

Abstract

Multigraphene films have been for the first time obtained on the surface of quartz glass via carbonization of polyimide Langmuir–Blodgett films. The Raman spectra of the films show bands G and D and a broad band at 2300–3200 cm–1, which are characteristic of graphite-like films. The transmission electron microscopy demonstrated that the films are constituted by “stacks” of layers spaced by 0.36 nm. The surface resistance of the 5-nm-thick films was 1.2 ± 0.2 kΩ, and the transmittance was 87% at λ = 550 nm. The transmittance was 97% in the IR part of the spectrum and 70–80% in the UV part.

Notes

REFERENCES

  1. 1.
    K. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature (London, U.K.) 490, 192 (2012).  https://doi.org/10.1038/nature11458 ADSCrossRefGoogle Scholar
  2. 2.
    A. C. Ferrari, Nanoscale 7, 4598 (2015).  https://doi.org/10.1039/C4NR01600A ADSCrossRefGoogle Scholar
  3. 3.
    X. Wang, L. Zhi, N. Tsao, Z. Tomović, J. Li, and K. Müllen, Angew. Chem., Int. Ed. Engl. 47, 2990 (2008).  https://doi.org/10.1002/ange.200704909 CrossRefGoogle Scholar
  4. 4.
    H. J. Jo, J. H. Lyu, R. S. Ruoff, H. Lim, S. I. Yoon, H. Y. Jeong, T. J. Shin, C. W. Bielawski, and H. S. Shin, 2D Mater 4, 014005 (2017).  https://doi.org/10.1088/2053-1583/4/014005
  5. 5.
    S. I. Goloudina, V. V. Luchinin, V. M. Pasyuta, M. F. Panov, E. N. Sevost’yanov, I. V. Gofman, V. P. Sklizkova, V. M. Svetlichnyi, and V. V. Kudryavtsev, Nano- Mikrosist. Tekh., No. 12, 32 (2015).Google Scholar
  6. 6.
    A. Ya. Vinogradov, S. A. Grudinkin, N. A. Besedina, S. V. Koniakhin, M. K. Rabchinskii, E. D. Eidelman, and V. G. Golubev, Semiconductors 52, 914 (2018).  https://doi.org/10.21883/FTP.2018.07.46051.8782 ADSCrossRefGoogle Scholar
  7. 7.
    S. I. Goloudina, V. V. Luchinin, V. M. Pasyuta, V. V. Rozanov, V. P. Sklizkova, V. V. Kudryavtsev, A. A. Levin, D. K. Meyer, and P. Paufler, Russ. J. Appl. Chem. 78, 1474 (2005).CrossRefGoogle Scholar
  8. 8.
    V. V. Luchinin, S. I. Goloudina, V. M. Pasyuta, A. S. Ivanov, M. Baklanov, and M. Krishtab, US Patent No. 9492841B2 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. I. Goloudina
    • 1
    Email author
  • V. V. Luchinin
    • 1
  • V. M. Pasyuta
    • 1
  • A. N. Smirnov
    • 2
  • D. A. Kirilenko
    • 2
    • 3
  • E. N. Sevost’yanov
    • 1
  • G. A. Konoplev
    • 1
  • V. V. Andryushkin
    • 1
  • V. P. Sklizkova
    • 4
  • I. V. Gofman
    • 4
  • V. M. Svetlichnyi
    • 4
  • V. V. Kudryavtsev
    • 4
  1. 1.St. Petersburg State Electrotechnical University “LETISt. PetersburgRussia
  2. 2.Ioffe Physical Technical Institute, Russian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg National University of Information Technologies, Mechanics and Optics (ITMO University)St. PetersburgRussia
  4. 4.Institute of Macromolecular Compounds, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations