Technical Physics Letters

, Volume 44, Issue 9, pp 761–764 | Cite as

An Experimental Study of Synchronization of Nonidentical Neuronlike Oscillators with an Adaptive Delayed Coupling

  • V. I. Ponomarenko
  • D. D. Kul’minskii
  • M. D. ProkhorovEmail author


A radiophysical model of two delay-coupled FitzHugh–Nagumo self-sustained generators coupling is constructed. The possibility of introducing both a constant and adaptive coupling between the generators is experimentally implemented in the model. It is shown that the use of an adaptive coupling makes it possible to shift from the antiphase synchronization of nonidentical generators to their in-phase synchronization.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Univ. Press, Cambridge, 2001).CrossRefzbMATHGoogle Scholar
  2. 2.
    M. Goulding, Nat. Rev. Neurosci. 10, 507 (2009).CrossRefGoogle Scholar
  3. 3.
    L. Glass, Nature (London, U.K.) 410, 277 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    M. D. Prokhorov, V. I. Ponomarenko, V. I. Gridnev, M. B. Bodrov, and A. B. Bespyatov, Phys. Rev. E 68, 041913 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    W. T. Blume and N. Pillay, Epilepsia 26, 636 (1985).CrossRefGoogle Scholar
  6. 6.
    R. Levy, W. D. Hutchison, A. M. Lozano, and J. O. Dostrovsky, J. Neurosci. 20, 7766 (2000).CrossRefGoogle Scholar
  7. 7.
    V. Flunkert, S. Yanchuk, T. Dahms, and E. Schöll, Phys. Rev. Lett. 105, 254101 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    V. V. Klinshov and V. I. Nekorkin, Phys. Usp. 56, 1217 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    A. Otto, G. Radons, D. Bachrathy, and G. Orosz, Phys. Rev. E 97, 012311 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    J. Sun, E. M. Bollt, and T. Nishikawa, Europhys. Lett. 85, 60011 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    J. Lehnert, P. Hövel, A. A. Selivanov, A. L. Fradkov, E. Schöll, Phys. Rev. E 90, 042914 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    V. V. Makarov, A. A. Koronovskii, V. A. Maksimenko, A. E. Hramov, O. I. Moskalenko, J. M. Buldu, and S. Boccaletti, Chaos Solitons Fractals 84, 23 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    O. V. Maslennikov and V. I. Nekorkin, Phys. Usp. 60, 694 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    S. A. Plotnikov, J. Lehnert, A. L. Fradkov, and E. Schöll, Int. J. Bifurcat. Chaos 26, 1650058 (2016).CrossRefGoogle Scholar
  15. 15.
    M. Lodi, A. Shilnikov, and M. Storace, IEEE Trans. Circuits Syst. I: Regular Papers 65, 1028 (2018).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Ponomarenko
    • 1
    • 2
    • 3
  • D. D. Kul’minskii
    • 1
    • 2
    • 3
  • M. D. Prokhorov
    • 1
    • 2
    Email author
  1. 1.Saratov Branch, Kotelnikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesSaratovRussia
  2. 2.Gagarin Saratov State Technical UniversitySaratovRussia
  3. 3.Chernyshevskii Saratov State UniversitySaratovRussia

Personalised recommendations