Advertisement

Spontaneous Transitions to High-Conductivity States in Polyvinylchloride Composite Films

  • 3 Accesses

Abstract

Experimental results on anomalous conductivity in specifically synthesized copolymer films are analyzed. Polyacetylene molecular fragments with variable concentration are introduced into polyvinylchloride macromolecules. It is shown that such samples exhibit spontaneous and stimulated conductivity jumps by 13 orders of magnitude and the lifetime of such states may range from several minutes to a day. A qualitative model is proposed to describe the anomalous behavior of the polyvinylchloride composite including effects that provide stabilization of the high-conductivity states, conditions for development of instability in the transitions between the states, and the reasons for long-lived high-conductivity state even in the absence of external voltage. Simple numerical estimations that prove the proposed effects are considered.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    W. Barford, Electronic and Optical Properties of Conjugated Polymers (Clarendon, Oxford, 2005).

  2. 2

    M. Wan, Conducting Polymers with Micro or Nanometer Structure (Springer, 2008).

  3. 3

    A. N. Lachinov and N. V. Vorob’eva, Phys.-Usp. 49, 1223 (2006).

  4. 4

    K. Friedrich, S. Fakirov, and Z. Zhang, Polymer Composites. From Nano- to Macro-Scale (Springer, 2005).

  5. 5

    Polymer Nanocomposites, Ed. by Y.-W. Mai and Z.-Z. Yu (Woodhead, Cambridge, 2006).

  6. 6

    I. V. Dolbin, G. V. Kozlov, and G. E. Zaikov, Structural Stabilization of Polymers: Fractal Models (Akademiya Estestvoznaniya, 2007).

  7. 7

    R. A. Pethrick, Polymer Structure Characterization: From Nano To Macro Organization (Royal Society of Chemistry, 2013).

  8. 8

    D. V. Vlasov, V. I. Kryshtob, T. V. Vlasova, L. A. Apresyan, and S. I. Rasmagin, Polym. Sci. Ser. A 57, 304 (2015). https://doi.org/10.1134/S0965545X15030165

  9. 9

    S. I. Rasmagin, V. I. Krasovskii, D. V. Vlasov, L. A. Apresyan, T. V. Vlasova, V. I. Kryshtob, I. N. Feofanov, and M. A. Kazaryan, Proc. SPIE 9810, 98100C (2015). https://doi.org/10.1117/12.2224963

  10. 10

    V. I. Kryshtob and S. I. Rasmagin, Tech. Phys. 62, 1689 (2017). https://doi.org/10.1134/S1063784217110196

  11. 11

    V. I. Kryshtob, D. V. Vlasov, V. F. Mironov, L. A. Apresyan, T. V. Vlasova, S. I. Rasmagin, Z. A. Kuratashvili, and A. A. Solovskii, Russ. Electr. Eng. 86, 471 (2015).

  12. 12

    V. I. Kryshtob, D. V. Vlasov, V. F. Mironov, L. A. Apresyan, T. V. Vlasova, S. I. Rasmagin, Z. A. Kuratashvili, and A. A. Solovskii, Russ. Electr. Eng. 85, 318 (2014).

  13. 13

    S. I. Peredereeva, I. G. Orlov, and M. I. Cherkashin, Russ. Chem. Rev. 44, 295 (1975).

  14. 14

    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979).

  15. 15

    P. Stallinga, Adv. Mater. 23, 3356 (2011).

  16. 16

    P. Sheng, Phys. Rev. 21, 2180 (1980).

  17. 17

    L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Fizmatlit, Moscow, 2004).

  18. 18

    K. L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969).

  19. 19

    M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).

  20. 20

    S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).

  21. 21

    O. A. Skaldin, A. Yu. Zherebov, A. N. Lachinov, A. N. Chuvyrov, and V. A. Delev, JETP Lett. 51, 159 (1990).

  22. 22

    N. S. Enikolopyan, Yu. A. Berlin, S. I. Beshenko, and V. A. Zhorin, JETP Lett. 33, 492 (1981).

  23. 23

    Yu. A. Berlin, S. I. Beshenko, and V. A. Zhorin, Dokl. Akad. Nauk SSSR 260, 1389 (1981).

  24. 24

    V. I. Kryshtob, S. I. Rasmagin, and T. V. Vlasova, Russ. Electr. Eng. 89, 385 (2018).

  25. 25

    S. I. Rasmagin, V. I. Krasovskii, I. K. Novikov, I. K. Novikov, and I. N. Fofanov, Proc. SPIE 10614, 106140B (2018). https://doi.org/10.1117/12.2302981

Download references

Author information

Correspondence to S. I. Rasmagin.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vlasova, T.V., Rasmagin, S.I. Spontaneous Transitions to High-Conductivity States in Polyvinylchloride Composite Films. Tech. Phys. 64, 1837–1842 (2019). https://doi.org/10.1134/S1063784219120260

Download citation