Advertisement

Technical Physics

, Volume 64, Issue 12, pp 1796–1802 | Cite as

Effect of Tungsten Carbidization on Gas Activation in Synthesis of Diamond Structures

  • A. A. Emel’yanov
  • M. Yu. PlotnikovEmail author
  • I. B. Yudin
PHYSICAL MATERIALS SCIENCE
  • 5 Downloads

Abstract

With the aim of developing a gas-jet technique for depositing diamond structures, the flow of a hydrogen–methane mixture through hot coaxial tungsten cylindrical channels with a tungsten coil inside has been investigated. Emphasis has been placed on tungsten surface carbidization during gas-jet deposition and the influence of carbidization on the deposition rate and morphology of applied coatings. Several experiments on tungsten surface carbidization under different conditions for hydrogen–methane mixture supply have been conducted. Simulation of the mixture flow by direct simulation Monte Carlo method has been performed. Possible ways of how methane and its fragments fall on the surface of the coil has been discussed.

Notes

ACKNOWLEDGMENTS

The authors thank Academician A.K. Rebrov for valuable discussions and comments.

FUNDING

This study was partially supported by the Russian Foundation for Basic Research (grant no. 18-08-00295) and budget grants (grant nos. AAAA-A17-117022850029-9 and AAAA-A17-117030110017-0).

CONFLICT OF INTEREST

The authors claim that they do not have any conflicts of interest.

REFERENCES

  1. 1.
    B. V. Spitsyn and A. E. Alexenko, Prot. Met. 43, 415 (2007).  https://doi.org/10.1134/S0033173207050025 CrossRefGoogle Scholar
  2. 2.
    R. A. Khmelnitskiy, Phys.-Usp. 58, 134 (2015).  https://doi.org/10.3367/UFNe.0185.201502b.0143 CrossRefGoogle Scholar
  3. 3.
    A. K. Rebrov, Phys.-Usp. 60, 179 (2017).  https://doi.org/10.3367/UFNe.2016.04.037794 CrossRefGoogle Scholar
  4. 4.
    P. W. May, Philos. Trans. R. Soc., A 358, 473 (2000).  https://doi.org/10.1098/rsta.2000.0542 ADSCrossRefGoogle Scholar
  5. 5.
    A. A. Emelyanov, A. K. Rebrov, and I. B. Yudin, J. Appl. Mech. Tech. Phys. 55, 270 (2014).  https://doi.org/10.1134/S0021894414020096 ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Emelyanov, A. K. Rebrov, and I. B. Yudin, Phys. Status Solidi A 211, 2279 (2014).  https://doi.org/10.1002/pssa.201431175 ADSCrossRefGoogle Scholar
  7. 7.
    A. Rebrov, A. Emelyanov, S. Kosolobov, and I. Yudin, Phys. Status Solidi C 12, 931 (2015).  https://doi.org/10.1002/pssc.201510043 ADSCrossRefGoogle Scholar
  8. 8.
    A. K. Rebrov, M. N. Andreev, T. T. Bieiadovskii, and K. V. Kubrak, Surf. Coat. Technol. 325, 210 (2017).  https://doi.org/10.1016/j.surfcoat.2017.06.060 CrossRefGoogle Scholar
  9. 9.
    A. A. Emel’yanov, A. K. Rebrov, and I. B. Yudin, Tech. Phys. 61, 1821 (2016).  https://doi.org/10.1134/S1063784216120124 CrossRefGoogle Scholar
  10. 10.
    A. Rebrov, Diamond Relat. Mater. 72, 20 (2017).  https://doi.org/10.1016/j.diamond.2016.12.014 ADSCrossRefGoogle Scholar
  11. 11.
    A. K. Rebrov, A. A. Emel’yanov, M. Yu. Plotnikov, and I. B. Yudin, Appl. Mech. Tech. Phys. 58, 881 (2017).  https://doi.org/10.1134/S0021894417050145 ADSCrossRefGoogle Scholar
  12. 12.
    A. K. Rebrov and I. B. Yudin, Dokl. Phys. 61, 223 (2016).  https://doi.org/10.1134/S1028335816050025 ADSCrossRefGoogle Scholar
  13. 13.
    M. Yu. Plotnikov and E. V. Shkarupa, Vacuum 129, 31 (2016).  https://doi.org/10.1016/j.vacuum.2016.04.001 ADSCrossRefGoogle Scholar
  14. 14.
    S. L. Kharatyan, A. A. Chatilyan, and A. G. Merzhanov, Khim. Fiz. 6, 225 (1987).Google Scholar
  15. 15.
    S. Okoli, R. Haubner, and B. Lux, Surf. Coat. Technol. 47, 585 (1991).  https://doi.org/10.1016/0257-8972(91)90329-U CrossRefGoogle Scholar
  16. 16.
    M. Boudart, D. F. Ollis, and G. W. Harris, Trans. Faraday Soc. 65, 519 (1969).CrossRefGoogle Scholar
  17. 17.
    M. Sommer and F. W. Smith, J. Mater. Res. 5, 2433 (1990).  https://doi.org/10.1557/JMR.1990.2433 ADSCrossRefGoogle Scholar
  18. 18.
    H. F. Winters, H. Seki, R. R. Rye, and M. E. Coltrin, J. Appl. Phys. 76, 1228 (1994).  https://doi.org/10.1063/1.357852 ADSCrossRefGoogle Scholar
  19. 19.
    A. A. Emel’yanov, I. B. Yudin, A. K. Rebrov, and V. A. Lebedev, Proc. XXXI All-Russian Conf. “Siberian Thermophysics Seminar,” Novosibirsk, Russia, 2014, p. 202.Google Scholar
  20. 20.
    M. Yu. Plotnikov and E. V. Shkarupa, Appl. Mech. Tech. Phys. 58, 402 (2017).  https://doi.org/10.1134/S002189441703004X ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    H. Koschmieder and V. Raible, Rev. Sci. Instrum. 46, 536 (1975).  https://doi.org/10.1063/1.1134251 ADSCrossRefGoogle Scholar
  22. 22.
    M. S. Ivanov and S. V. Rogasinsky, Russ. J. Numer. Anal. Math. Modell. 3, 453 (1988).  https://doi.org/10.1515/rnam.1988.3.6.453 CrossRefGoogle Scholar
  23. 23.
    G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994).Google Scholar
  24. 24.
    A. A. Morozov, M. Yu. Plotnikov, A. K. Rebrov, and I. B. Yudin, AIP Conf. Proc. 1786, 050015 (2016).  https://doi.org/10.1063/1.4967565

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Emel’yanov
    • 1
  • M. Yu. Plotnikov
    • 1
    Email author
  • I. B. Yudin
    • 1
  1. 1.Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations