Advertisement

Formation of Low-Resistivity Au/Mo/Ti Ohmic Contacts to p-Diamond Epitaxial Layers

  • 14 Accesses

Abstract

The formation of Au/Mo/Ti ohmic contacts to p-diamond epitaxial films has been studied. Specifically, the influence of annealing on the electrical properties and structure of contacts has been investigated. It has been shown that the upper gold layer protects the contact system against oxidation up to 850°C during RTA unlike the case of a “simplified” Au-free Mo/Ti system frequently used in today’s solutions. In Mo-free Au/Ti systems, high-temperature annealing causes effective diffusion of titanium into the gold layer, which deteriorates the protective properties of the latter and enhances oxygen diffusion toward the interface with diamond. Oxidation of the Ti/C contact area prevents the formation of a titanium carbide conducting layer, which has high adhesion to diamond. The role of various factors, namely, annealing to form titanium carbide, heavy doping of diamond with boron, and crystal perfection of diamond films, in lowering the contact resistance, has been estimated. For doped epitaxial films grown on single-sector substrates, unalloyed ohmic contacts with a record low contact resistance of 4 × 10–7 Ω/cm2 have been obtained.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. 1

    J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, et al., Adv. Electron. Mater 4, 1600501 (2018). https://doi.org/10.1002/aelm.201600501

  2. 2

    Power Electronics Device Applications of Diamond Semiconductors, Ed. by S. Koizumi, H. Umezawa, J. Pernot, and M. Suzuki (Elsevier, 2018).

  3. 3

    T. V. Blank and Yu. A. Gol’dberg, Semiconductors 41, 1263 (2007).

  4. 4

    J. F. Prins, J. Phys. D: Appl. Phys. 22, 1562 (1989).

  5. 5

    R. Kalish, Appl. Surf. Sci. 117/118, 558 (1997).

  6. 6

    V. Venkatesan, D. M. Malta, K. Das, and A. M. Belu, J. Appl. Phys. 74, 1179 (1993).

  7. 7

    J. C. Pinero, M. P. Villar, D. Araujo, J. Montserrat, B. Antunez, and P. Godignon, Phys. Status Solidi A 214, 1700230 (2017). https://doi.org/10.1002/pssa.201700230

  8. 8

    T. Tachibana, B. E. Williams, and J. T. Glass, Phys. Rev. B 45, 11975 (1992).

  9. 9

    J. Nakanishi, A. Otsuki, T. Oku, O. Ishiwata, and M. Murakami, J. Appl. Phys. 76, 2293 (1994).

  10. 10

    M. Yokoba, Y. Koide, A. Otsuki, F. Ako, T. Oku, and M. Murakami, J. Appl. Phys. 81, 6815 (1997).

  11. 11

    P. E. Viljoen, E. S. Lambers, and P. H. Holloway, J. Vac. Sci. Technol. B 12, 2997 (1994). https://doi.org/10.1116/1.587549

  12. 12

    K. L. Moazed, J. R. Zeidler, and M. J. Taylor, J. Appl. Phys. 68, 2246 (1990).

  13. 13

    Y. Chen, M. Ogura, S. Yamasaki, and H. Okushi, Semicond. Sci. Technol. 20, 860 (2005). https://doi.org/10.1088/0268-1242/20/8/041

  14. 14

    S. Kono, T. Teraji, H. Kodama, K. Ichikawa, S. Ohnishi, and A. Sawabe, Diamond Related Mater. 60, 117 (2015). https://doi.org/10.1016/j.diamond.2015.10.028

  15. 15

    D. Zhao, F. N. Li, Z. C. Liu, X. D. Chen, Y. F. Wang, G. Q. Shao, T. F. Zhu, M. H. Zhang, J. W. Zhang, J. J. Wang, W. Wang, and H. X. Wang, Appl. Surf. Sci. 443, 361 (2018). https://doi.org/10.1016/j.apsusc.2018.03.015

  16. 16

    W. P. Leroy, C. Detavernier, R. L. van Meirhaeghe, A. J. Kellock, and C. Lavoie, J. Appl. Phys. 99, 063704 (2006). https://doi.org/10.1063/1.2180436

  17. 17

    W. P. Leroy, C. Detavernier, R. L. van Meirhaeghe, and C. Lavoie, J. Appl. Phys. 101, 053714 (2007). https://doi.org/10.1063/1.2561173

  18. 18

    S. Ohmagari, T. Matsumoto, H. Umezawa, and Y. Mokuno, MRS Adv. 1, 3489 (2016). https://doi.org/10.1557/adv.2016.471

  19. 19

    F. Fang, C. A. Hewett, M. G. Fernandes, and S. S. Lau, IEEE Trans. Electron Devices 36, 1783 (1989).

  20. 20

    M. Werner, O. Dorsch, H.-U. Baerwind, E. Obermeier, C. Johnston, P. R. Chalker, and S. Romani, IEEE Trans. Electron Devices 42, 1334 (1995).

  21. 21

    M. Werner, Semicond. Sci. Technol. 18, 41 (2003). https://doi.org/10.1088/0268-1242/18/3/306

  22. 22

    G. R. Brandes, C. P. Beetz, C. F. Feger, R. W. Wright, and J. L. Davidson, Diamond Relat. Mater. 8, 1936 (1999).

  23. 23

    G. Civrac, S. Msolli, J. Alexis, O. Dalverny, and H. Schneider, Electron. Lett. 46, 791 (2010). https://doi.org/10.1049/el.2010.0803

  24. 24

    M. P. Dukhnovskii, A. K. Ratnikova, and Yu. Yu. Fedorov, RF Patent No. 2436189, Byull. Izobret., No. 34 (2011).

  25. 25

    L. A. Vikharev, A. M. Gorbachev, M. A. Lobaev, A. B. Muchnikov, D. B. Radishev, V. A. Isaev, V. V. Chernov, S. A. Bogdanov, M. N. Drozdov, and J. E. Butler, Phys. Status Solidi RRL 10, 324 (2016). https://doi.org/10.1002/pssr.201510453

  26. 26

    M. N. Drozdov, Yu. N. Drozdov, M. A. Lobaev, and P. A. Yunin, Tech. Phys. Lett. 44, 297 (2018). https://doi.org/10.1134/S106378501804003X

  27. 27

    M. P. Alegre, D. Araujo, A. Fiori, J. C. Pinero, F. Lloret, M. P. Villar, P. Achatz, G. Chicot, E. Bustarret, and F. Jomard, Appl. Phys. Lett. 105, 173103 (2014). https://doi.org/10.1063/1.4900741

Download references

Author information

Correspondence to M. N. Drozdov.

Ethics declarations

The authors claim that they do not have any conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drozdov, M.N., Demidov, E.V., Drozdov, Y.N. et al. Formation of Low-Resistivity Au/Mo/Ti Ohmic Contacts to p-Diamond Epitaxial Layers. Tech. Phys. 64, 1827–1836 (2019) doi:10.1134/S1063784219120041

Download citation