Advertisement

Technical Physics

, Volume 64, Issue 11, pp 1688–1691 | Cite as

Influence of Beryllium Barrier Layers on the Properties of Mo/Si Multilayer Mirrors

  • S. Yu. Zuev
  • R. S. PleshkovEmail author
  • V. N. Polkovnikov
  • N. N. Salashchenko
  • M. V. Svechnikov
  • N. I. Chkhalo
  • F. Schäfers
  • M. G. Sertsu
  • A. Sokolov
Article
  • 21 Downloads

Abstract

The performance of multilayer Mo/Si mirrors with B4C and Be spacers near a wavelength of 13.5 nm has been studied. It has been shown that four-component Mo/Be/Si/B4C mirrors outperform Mo/Si and Mo/Si/B4C mirrors in reflection coefficient by 2.0 and 1.3%, respectively. In addition, Mo/Si mirrors offer the widest transmission band width at half maximum (Δλ1/2 = 0.535 nm). An explanation for these findings has been given.

Notes

FUNDING

This study was supported by the Russian Foundation for Basic Research (grant nos. 18-02-00588, 18-02-00173, 18-32-00173, 19-02-00081, 17-52-150006) and program no. 0035-2018-0011 of the Russian Academy of Sciences.

CONFLICT OF INTEREST

The authors claim that they do not have any conflicts of interest.

REFERENCES

  1. 1.
    A. K. Petford-Long, M. B. Stearns, C. H. Chang, et al., J. Appl. Phys. 61, 1422 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    R. S. Rosen, S. P. Vernon, G. Stearns, et al., Appl. Opt. 32, 6975 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    J. M. Slaughter, P. A. Kearney, D. W. Schulze, et al., Proc. SPIE 1343, 73 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    J. M. Slaughter, D. W. Schulze, C. R. Hills, et al., J. Appl. Phys. 76, 2144 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    D. G. Stearns, R. S. Rosen, and S. P. Vernon, Appl. Opt. 32, 6952 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    S. S. Andreev, S. V. Gaponova, S. A. Gusev, et al., Thin Solid Films 415, 123 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    S. Braun, H. Mai, M. Moss, et al., Jpn. J. Appl. Phys. 41, 4074 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, et al., Proc. SPIE 6517, 65170I (2007).CrossRefGoogle Scholar
  9. 9.
    N. I. Chkhalo, S. A. Gusev, A. N. Nechay, et al., Opt. Lett. 42, 5070 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    A. D. Akhsakhalyan, E. B. Kluenkov, A. Ya. Lopatin, V. I. Luchin, A. N. Nechay, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, M. V. Svechnikov, M. N. Toropov, N. N. Tsybin, N. I. Chkhalo, and A. V. Shcherbakov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11, 1 (2017).CrossRefGoogle Scholar
  11. 11.
    N. I. Chkhalo, D. E. Pariev, V. N. Polkovnikov, et al., Thin Solid Films 631, 106 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    S. S. Andreev, A. D. Akhsakhalyan, M. A. Bibishkin, et al., Cent. Eur. J. Phys. 1, 191 (2003).Google Scholar
  13. 13.
    F. Schafers, P. Bischoff, F. Eggenstein, et al., J. Synchrotron Radiat. 23, 67 (2016).CrossRefGoogle Scholar
  14. 14.
    A. Sokolov, P. Bischoff, F. Eggenstein, et al., Rev. Sci. Instrum. 87, 052005 (2016).CrossRefGoogle Scholar
  15. 15.
    M. Svechnikov, D. Pariev, A. Nechay, et al., J. Appl. Crystallogr. 50, 1428 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. Yu. Zuev
    • 1
  • R. S. Pleshkov
    • 1
    Email author
  • V. N. Polkovnikov
    • 1
  • N. N. Salashchenko
    • 1
  • M. V. Svechnikov
    • 1
  • N. I. Chkhalo
    • 1
  • F. Schäfers
    • 2
  • M. G. Sertsu
    • 2
  • A. Sokolov
    • 2
  1. 1.Institute for Physics of Microstructures, Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Helmholtz-Zentrum BerlinBerlinGermany

Personalised recommendations