Advertisement

Technical Physics

, Volume 64, Issue 11, pp 1584–1589 | Cite as

Control over the Magnetic Properties of Co/Pt-based Multilayered Periodical Structures

  • D. A. TatarskiyEmail author
  • N. S. Gusev
  • V. Yu. Mikhailovskii
  • Yu. V. Petrov
  • S. A. Gusev
Article
  • 24 Downloads

Abstract

The possibility of controlling the magnetic properties of multilayered periodical structures with perpendicular magnetic anisotropy, which are based on cobalt and platinum films, have been studied. The multilayered films composed by layers with a thickness of 0.5–1.0 nm were subjected to two types of actions: vacuum annealing at different temperatures and irradiation by helium ion beams. Transmission electron microscopy has shown that the irradiation by He+ ions with energy of 30 keV leads to material mixing in the layers since at vacuum annealing the layered structure of films is kept. In this case, as a result of thermal annealing, the coercive force of the structure increases significantly, and upon irradiation with helium ions, the coercivity of the films decreases to a change in the type of anisotropy from perpendicular to “easy plane” anisotropy.

Notes

ACKNOWLEDGMENTS

The equipment of the Interdisciplinary Resource Center under the direction of Nanotechnology (St. Petersburg State University) and Physics and Technology of Micro- and Nanostructures (Institute for Physics of Microstructures, Russian Academy of Sciences) was used.

FUNDING

The study was supported by the Russian Foundation for Basic Research (obtaining and annealing multilayered films were supported by project no. 18-02-00247; modification by helium ions and structural studies were supported by project no. 18-02-00827).

CONFLICT OF INTEREST

We declare that we do not have any conflicts of interest.

REFERENCES

  1. 1.
    P. F. Carcia, J. Appl. Phys. 63, 5066 (1988).  https://doi.org/10.1063/1.340404 ADSCrossRefGoogle Scholar
  2. 2.
    G. Ziemys, V. Ahrens, S. Mendisch, G. Csaba, and M. Becherer, AIP Adv. 8, 056310 (2018).  https://doi.org/10.1063/1.5007308 ADSCrossRefGoogle Scholar
  3. 3.
    M. Becherera, J. Kiermaiera, S. Breitkreutza, I. Eichwalda, G. Žiemysa, G. Csabab, and D. Schmitt-Landsiedela, Solid-State Electron. 102, 46 (2014).  https://doi.org/10.1016/j.sse.2014.06.012 ADSCrossRefGoogle Scholar
  4. 4.
    J. Kiermaier, S. Breitkreutz, I. Eichwald, M. Engelstädter, X. Ju, G. Csaba, D. Schmitt-Landsiedel, and M. Becherer, J. Appl. Phys. 113, 17B902 (2013).  https://doi.org/10.1063/1.4794184 CrossRefGoogle Scholar
  5. 5.
    R. Alben, J. J. Becker, and M. C. Chi, J. Appl. Phys. 49, 1653 (1978).  https://doi.org/10.1063/1.324881 ADSCrossRefGoogle Scholar
  6. 6.
    S. A. Gusev, D. A. Tatarskiy, A. Yu. Klimov, V. V. Rogov, E. V. Skorokhodov, M. V. Sapozhnikov, B. A. Gribkov, I. M. Nefedov, and A. A. Fraerman, Phys. Solid State 55, 481 (2013).  https://doi.org/10.1134/S1063783413030141 ADSCrossRefGoogle Scholar
  7. 7.
    M. V. Sapozhnikov, S. N. Vdovichev, O. L. Ermolaeva, N. S. Gusev, A. A. Fraerman, S. A. Gusev, and Yu. V. Petrov, Appl. Phys. Lett. 109, 042406 (2016).  https://doi.org/10.1063/1.4958300 ADSCrossRefGoogle Scholar
  8. 8.
    S. A. Gusev, M. N. Drozdov, O. L. Ermolaeva, A.  A. Fraerman, N. S. Gusev, V. Yu. Mikhailovskii, Yu. V. Petrov, M. V. Sapozhnikov, and S. N. Vdovichev, AIP Conf. Proc. 1748, 030002 (2016).  https://doi.org/10.1063/1.4954348
  9. 9.
    D. A. Tatarskiy, E. V. Skorokhodov, N. S. Gusev, V. Yu. Mikhailovskii, Yu. V. Petrov, and S. A. Gusev, AIP Conf. Proc. 2064, 020005 (2019).  https://doi.org/10.1063/1.5087661 CrossRefGoogle Scholar
  10. 10.
    A. Aziz, S. J. Bending, H. Roberts, S. Crampin, P. J. Heard, and C. H. Marrows, J. Appl. Phys. 98, 124102 (2005).  https://doi.org/10.1063/1.2149500 ADSCrossRefGoogle Scholar
  11. 11.
    R. Gupta, K. P. Lieb, G. A. Muller, M. Weisheit, and K. Zhang, Nucl. Instrum. Methods Phys. Res., Sect. B 2246, 393 (2006).  https://doi.org/10.1016/j.nimb.2006.01.019 CrossRefGoogle Scholar
  12. 12.
    J. Fassbender and J. McCord, J. Magn. Magn. Mater. 320, 579 (2008).  https://doi.org/10.1016/j.jmmm.2007.07.032 ADSCrossRefGoogle Scholar
  13. 13.
    C. T. Rettner, S. Anders, J. E. E. Baglin, T. Thomson, and B. D. Terris, Appl. Phys. Lett. 80, 279 (2002).  https://doi.org/10.1063/1.1432108 ADSCrossRefGoogle Scholar
  14. 14.
    T. Devolder, J. Ferré, C. Chappert, H. Bernas, J.-P. Jamet, and V. Mathet, Phys. Rev. B 64, 064415 (2001).  https://doi.org/10.1103/PhysRevB.64.064415 ADSCrossRefGoogle Scholar
  15. 15.
    S. A. Gusev, Yu. N. Nozdrin, D. B. Rozenshtein, and A. E. Tselev, Tech. Phys. 43, 407 (1998).  https://doi.org/10.1134/1.1258995 CrossRefGoogle Scholar
  16. 16.
    N. Sehdev, R. Medwal, R. Malik, A. Kandasami, D. Kanjilald, and S. Annapoornie, Nucl. Instrum. Methods Phys. Res., Sect. B 420, 50 (2018).  https://doi.org/10.1016/j.nimb.2018.02.003 CrossRefGoogle Scholar
  17. 17.
    Yi. Wang, W. X. Wang, H. X. Wei, B. S. Zhang, W. S. Zhan, and X. F. Han, J. Appl. Phys. 107, 09C711 (2010).  https://doi.org/10.1063/1.3358249 CrossRefGoogle Scholar
  18. 18.
    T. Y. Lee, Y. Ch. Won, D. Su Son, S. Ho Lim, and S.-R. Lee, J. Appl. Phys. 114, 173909 (2013).  https://doi.org/10.1063/1.4829024 ADSCrossRefGoogle Scholar
  19. 19.
    T. Y. Lee, D. Su Son, S. Ho Lim, and S.-R. Lee, J. Appl. Phys. 113, 216102 (2013).  https://doi.org/10.1063/1.4809130 ADSCrossRefGoogle Scholar
  20. 20.
    R. Hara, K. Hayakawa, K. Ebata, and R. Sugita, AIP Adv. 6, 056117 (2016).  https://doi.org/10.1063/1.4943930 ADSCrossRefGoogle Scholar
  21. 21.
    H. Yamane, Y. Maeno, and M. Kobayashi, Appl. Phys. Lett. 62, 1562 (1993).  https://doi.org/10.1063/1.108641 ADSCrossRefGoogle Scholar
  22. 22.
    J. Zhihong, S. Defang, S. Tiansheng, G. Changlin, and G. Rongfa, Chin. Phys. Lett. 11, 169 (1994).  https://doi.org/10.1088/0256-307X/11/3/011 CrossRefGoogle Scholar
  23. 23.
    J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).  https://doi.org/10.1016/j.nimb.2010.02.091 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. A. Tatarskiy
    • 1
    • 2
    Email author
  • N. S. Gusev
    • 1
  • V. Yu. Mikhailovskii
    • 3
  • Yu. V. Petrov
    • 3
  • S. A. Gusev
    • 1
  1. 1.Institute for Physics of Microstructures, Russian Academy of SciencesAfoninoRussia
  2. 2.Lobachevsky State UniversityNizhny NovgorodRussia
  3. 3.St. Petersburg State University St. PetersburgRussia

Personalised recommendations