Technical Physics

, Volume 64, Issue 11, pp 1584–1589 | Cite as

Control over the Magnetic Properties of Co/Pt-based Multilayered Periodical Structures

  • D. A. TatarskiyEmail author
  • N. S. Gusev
  • V. Yu. Mikhailovskii
  • Yu. V. Petrov
  • S. A. Gusev


The possibility of controlling the magnetic properties of multilayered periodical structures with perpendicular magnetic anisotropy, which are based on cobalt and platinum films, have been studied. The multilayered films composed by layers with a thickness of 0.5–1.0 nm were subjected to two types of actions: vacuum annealing at different temperatures and irradiation by helium ion beams. Transmission electron microscopy has shown that the irradiation by He+ ions with energy of 30 keV leads to material mixing in the layers since at vacuum annealing the layered structure of films is kept. In this case, as a result of thermal annealing, the coercive force of the structure increases significantly, and upon irradiation with helium ions, the coercivity of the films decreases to a change in the type of anisotropy from perpendicular to “easy plane” anisotropy.



The equipment of the Interdisciplinary Resource Center under the direction of Nanotechnology (St. Petersburg State University) and Physics and Technology of Micro- and Nanostructures (Institute for Physics of Microstructures, Russian Academy of Sciences) was used.


The study was supported by the Russian Foundation for Basic Research (obtaining and annealing multilayered films were supported by project no. 18-02-00247; modification by helium ions and structural studies were supported by project no. 18-02-00827).


We declare that we do not have any conflicts of interest.


  1. 1.
    P. F. Carcia, J. Appl. Phys. 63, 5066 (1988). ADSCrossRefGoogle Scholar
  2. 2.
    G. Ziemys, V. Ahrens, S. Mendisch, G. Csaba, and M. Becherer, AIP Adv. 8, 056310 (2018). ADSCrossRefGoogle Scholar
  3. 3.
    M. Becherera, J. Kiermaiera, S. Breitkreutza, I. Eichwalda, G. Žiemysa, G. Csabab, and D. Schmitt-Landsiedela, Solid-State Electron. 102, 46 (2014). ADSCrossRefGoogle Scholar
  4. 4.
    J. Kiermaier, S. Breitkreutz, I. Eichwald, M. Engelstädter, X. Ju, G. Csaba, D. Schmitt-Landsiedel, and M. Becherer, J. Appl. Phys. 113, 17B902 (2013). CrossRefGoogle Scholar
  5. 5.
    R. Alben, J. J. Becker, and M. C. Chi, J. Appl. Phys. 49, 1653 (1978). ADSCrossRefGoogle Scholar
  6. 6.
    S. A. Gusev, D. A. Tatarskiy, A. Yu. Klimov, V. V. Rogov, E. V. Skorokhodov, M. V. Sapozhnikov, B. A. Gribkov, I. M. Nefedov, and A. A. Fraerman, Phys. Solid State 55, 481 (2013). ADSCrossRefGoogle Scholar
  7. 7.
    M. V. Sapozhnikov, S. N. Vdovichev, O. L. Ermolaeva, N. S. Gusev, A. A. Fraerman, S. A. Gusev, and Yu. V. Petrov, Appl. Phys. Lett. 109, 042406 (2016). ADSCrossRefGoogle Scholar
  8. 8.
    S. A. Gusev, M. N. Drozdov, O. L. Ermolaeva, A.  A. Fraerman, N. S. Gusev, V. Yu. Mikhailovskii, Yu. V. Petrov, M. V. Sapozhnikov, and S. N. Vdovichev, AIP Conf. Proc. 1748, 030002 (2016).
  9. 9.
    D. A. Tatarskiy, E. V. Skorokhodov, N. S. Gusev, V. Yu. Mikhailovskii, Yu. V. Petrov, and S. A. Gusev, AIP Conf. Proc. 2064, 020005 (2019). CrossRefGoogle Scholar
  10. 10.
    A. Aziz, S. J. Bending, H. Roberts, S. Crampin, P. J. Heard, and C. H. Marrows, J. Appl. Phys. 98, 124102 (2005). ADSCrossRefGoogle Scholar
  11. 11.
    R. Gupta, K. P. Lieb, G. A. Muller, M. Weisheit, and K. Zhang, Nucl. Instrum. Methods Phys. Res., Sect. B 2246, 393 (2006). CrossRefGoogle Scholar
  12. 12.
    J. Fassbender and J. McCord, J. Magn. Magn. Mater. 320, 579 (2008). ADSCrossRefGoogle Scholar
  13. 13.
    C. T. Rettner, S. Anders, J. E. E. Baglin, T. Thomson, and B. D. Terris, Appl. Phys. Lett. 80, 279 (2002). ADSCrossRefGoogle Scholar
  14. 14.
    T. Devolder, J. Ferré, C. Chappert, H. Bernas, J.-P. Jamet, and V. Mathet, Phys. Rev. B 64, 064415 (2001). ADSCrossRefGoogle Scholar
  15. 15.
    S. A. Gusev, Yu. N. Nozdrin, D. B. Rozenshtein, and A. E. Tselev, Tech. Phys. 43, 407 (1998). CrossRefGoogle Scholar
  16. 16.
    N. Sehdev, R. Medwal, R. Malik, A. Kandasami, D. Kanjilald, and S. Annapoornie, Nucl. Instrum. Methods Phys. Res., Sect. B 420, 50 (2018). CrossRefGoogle Scholar
  17. 17.
    Yi. Wang, W. X. Wang, H. X. Wei, B. S. Zhang, W. S. Zhan, and X. F. Han, J. Appl. Phys. 107, 09C711 (2010). CrossRefGoogle Scholar
  18. 18.
    T. Y. Lee, Y. Ch. Won, D. Su Son, S. Ho Lim, and S.-R. Lee, J. Appl. Phys. 114, 173909 (2013). ADSCrossRefGoogle Scholar
  19. 19.
    T. Y. Lee, D. Su Son, S. Ho Lim, and S.-R. Lee, J. Appl. Phys. 113, 216102 (2013). ADSCrossRefGoogle Scholar
  20. 20.
    R. Hara, K. Hayakawa, K. Ebata, and R. Sugita, AIP Adv. 6, 056117 (2016). ADSCrossRefGoogle Scholar
  21. 21.
    H. Yamane, Y. Maeno, and M. Kobayashi, Appl. Phys. Lett. 62, 1562 (1993). ADSCrossRefGoogle Scholar
  22. 22.
    J. Zhihong, S. Defang, S. Tiansheng, G. Changlin, and G. Rongfa, Chin. Phys. Lett. 11, 169 (1994). CrossRefGoogle Scholar
  23. 23.
    J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010). CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. A. Tatarskiy
    • 1
    • 2
    Email author
  • N. S. Gusev
    • 1
  • V. Yu. Mikhailovskii
    • 3
  • Yu. V. Petrov
    • 3
  • S. A. Gusev
    • 1
  1. 1.Institute for Physics of Microstructures, Russian Academy of SciencesAfoninoRussia
  2. 2.Lobachevsky State UniversityNizhny NovgorodRussia
  3. 3.St. Petersburg State University St. PetersburgRussia

Personalised recommendations