Technical Physics

, Volume 64, Issue 11, pp 1722–1727 | Cite as

Determination of Electrophysical Parameters of a Semiconductor from Measurements of the Microwave Spectrum of Coaxial Probe Impedance

  • A. N. ReznikEmail author
  • N. K. Vdovicheva


We propose a method for determining electrophysical characteristics (free charge carrier concentration, mobility, and conductivity) of semiconductors from the results of measurements of the microwave spectrum of the impedance of a coaxial probe as a function of applied constant voltage U. The sought parameters have been determined by solving the corresponding inverse problem using the theory of a near-field antenna that was developed earlier. We have developed a computer program that seeks the solution by minimization of the multiparametric residual function in accordance with the Nelder–Mead algorithm. The precision of the method has been analyzed from the results of simulation in which the impedance was calculated preliminarily considering resultant concentration profile n(x, U) of the depleted layer in the vicinity of the metal–semiconductor contact. The possibility of diagnostics with a micrometer lateral resolution has been demonstrated.



This study was supported by the Russian Foundation for Basic Research (project no. 18-02-00914).


The authors claim that there are no conflicts of interest.


  1. 1.
    N. V. Vostokov and V. I. Shashkin, IEEE Trans. Electron Devices 64, 109 (2017).ADSCrossRefGoogle Scholar
  2. 2.
    A. N. Reznik, N. V. Vostokov, N. K. Vdovicheva, S. A. Korolyov, and V. I. Shashkin, J. Appl. Phys. 122, 244505 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    N. V. Vostokov, E. A. Koblov, S. A. Korolyov, M. V. Revin, V. I. Shashkin, IEEE Trans. Electron Devices 65, 1327 (2018).ADSCrossRefGoogle Scholar
  4. 4.
    A. Imtiaz, T. Baldwin, H. T. Nembach, T. M. Wallis, and P. Kabos, Appl. Phys. Lett. 90, 23105 (2007).CrossRefGoogle Scholar
  5. 5.
    K. Laji, W. Kundhikanjana, M. A. Kelly, and Z.-X. Shen, Appl. Nanosci. 1, 13 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    S. A. Korolyov and A. N. Reznik, Rev. Sci. Instrum. 89, 023706 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    F. Buersgens, R. Kersting, and H.-T. Chen, Appl. Phys. Lett. 88, 112115 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    V. N. Trukhin, A. O. Golubok, A. V. Lyutetsky, B.  A.  Matveyev, N. A. Pikhtin, L. L. Samoilov, I. D. Sapozhnikov, I. S. Tarasov, M. L. Fel’shtyn, and D. P. Khor’kov, Radiophys. Quantum Electron. 54, 577 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    H. P. Huber, I. Humer, M. Hochleitner, M. Fenner, et al., J. Appl. Phys. 111, 014301 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    O. Amster, F. Stanke, S. Friedman, Y. Yang, St. J. Dixon-Warren, and B. Drevniok, Microelectron. Reliab. 76–77, 214 (2017).Google Scholar
  12. 12.
    S. Hommel, N. Killat, A. Altes, T. Schveinboeck, and F. Kreupl, Microelectron. Reliab. 76–77, 218 (2017).Google Scholar
  13. 13.
    V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics (Mir, Moscow, 1977).Google Scholar
  14. 14.
    J. A. Nelder and R. Mead, Comput. J. 7, 308 (1965).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute for Physics of Microstructures, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations