Advertisement

Technical Physics

, Volume 64, Issue 11, pp 1642–1645 | Cite as

Tunnel Мagnetoresistive Еlements for Magnetic Field Sensors

  • I. Yu. Pashen’kinEmail author
  • M. V. Sapozhnikov
  • N. S. Gusev
  • V. V. Rogov
  • D. A. Tatarskiy
  • A. A. Fraerman
Article
  • 24 Downloads

Abstract

We have developed technology for manufacturing chains of CoFe/Al2O3/NiFe tunnel magnetoresistive (TMR) elements with pinning on the IrMn antiferromagnetic layer. We have studied the dependence of the shape of magnetoresistance curves on the geometric parameters of laterally bounded TMR contacts, as well as on the mutual orientation of the external magnetic field and the axis of unidirectional anisotropy of the pinned CoFe layer. The chain resistance ranges from several tens of kiloohms to hundreds of megaohms depending on the thickness of the tunnel-transparent dielectric layer with a magnetoresistive effect of 10–15%. The developed technology can be used in manufacturing tunneling magnetic field sensors.

Notes

ACKNOWLEDGMENTS

When performing the study, we used equipment of the Center for Collective Use Physics and Technology of Micro- and Nanostructures, Institute for Physics of Microstructures.

FUNDING

Developing the technology for manufacturing tunnel magnitoresistive structures and studying their magnetic properties was supported by the Russian Foundation for Basic Research (project no. 18-02-00247). Investigations of the transportation and magnetoelectric properties of chains of tunnel contacts was supported by the Russian Science Foundation (project 16-12-10340).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

  1. 1.
    P. P. Freitas, R. Ferreira, and S. Cardoso, Proc. IEEE 104, 1894 (2016).  https://doi.org/10.1109/JPROC.2016.2578303 CrossRefGoogle Scholar
  2. 2.
    S. Yuasa and D. D. Djayaprawira, J. Phys. D 40, 337 (2007).  https://doi.org/10.1088/0022-3727/40/21/R01 ADSCrossRefGoogle Scholar
  3. 3.
    H. X. Wie, Q. H. Qin, M. Ma, R. Sharif, and X. F. Han, J. Appl. Phys. 101, 09B501 (2007).  https://doi.org/10.1063/1.2696590 CrossRefGoogle Scholar
  4. 4.
    D. X. Wang, C. Nordman, J. M. Daughton, Z. H. Qian, and J. Fink, IEEE Trans. Magn. 40, 2269 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    L. Gao, X. Jiang, S.-H. Yang, P. M. Rice, and T. Topuria, Phys. Rev. Lett. 102, 247205 (2009).  https://doi.org/10.1103/PhysRevLett.102.247205 ADSCrossRefGoogle Scholar
  6. 6.
    S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 93, 082508 (2008).  https://doi.org/10.1063/1.297643 ADSCrossRefGoogle Scholar
  7. 7.
    E. S. de Gracia, L. S. Dorneles, L. F. Schelp, S. R. Teixeira, and M. N. Baibich, Phys. Rev. B 76, 214426 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    F. Li, Z. Li, M. Xiao, J. Du, W. Xu, and A. Hu, Phys. Rev. B 69, 054410 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. Yu. Pashen’kin
    • 1
    Email author
  • M. V. Sapozhnikov
    • 1
    • 2
  • N. S. Gusev
    • 1
  • V. V. Rogov
    • 1
  • D. A. Tatarskiy
    • 1
    • 2
  • A. A. Fraerman
    • 1
  1. 1.Institute for Physics of MicrostructuresNizhny NovgorodRussia
  2. 2.Lobachevsky State UniversityNizhny NovgorodRussia

Personalised recommendations