Advertisement

Technical Physics

, Volume 64, Issue 11, pp 1646–1651 | Cite as

Magnetostriction Effect in Ferromagnetic Films with Easy-Axis and Easy-Plane Anisotropies

  • N. S. GusevEmail author
  • I. Yu. Pashen’kin
  • M. V. Sapozhnikov
  • O. G. Udalov
  • P. A. Yunin
Article
  • 13 Downloads

Abstract

Magnetostriction properties of Ni and FeGa films with easy-plane anisotropy and Co/Pt multilayer structures with perpendicular anisotropy have been experimentally investigated. The magnetic properties of films have been studied by magneto-optical methods. Magneto-optical measurements have been performed with controlled bending of the substrate on which the magnetic film is deposited. It is shown that substrate bending induces rotation of the anisotropy axis of the Ni and FeGa films by 90° relative to its initial direction in an unstrained film. The value of perpendicular anisotropy in the Co/Pt multilayer films is shown to change at substrate bending. The layer parameters, at which the magnetostriction effect can be observed in films with perpendicular anisotropy, are established.

Notes

ACKNOWLEDGMENTS

This study was performed on equipment of the Shared Research Center Physics and Technology of Micro- and Nanostructures.

FUNDING

This study was supported by the Russian Science Foundation, grant no. 18-72-10026.

CONFLICT OF INTEREST

The authors declare that they do not have any conflicts of interest.

REFERENCES

  1. 1.
    M. Fiebig, J. Phys. D 38, R123 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    G. P. Carman, IEEE Trans. Magn. 51, 0600104 (2015).CrossRefGoogle Scholar
  3. 3.
    S. Geprags, A. Brandlmaier, M. Opel, R. Gross, and S. T. B. Goennenwein, Appl. Phys. Lett. 96, 142509 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    R. Streubel, D. Kohler, R. Schafer, and L. M. Eng, Phys. Rev. B 87, 054410 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    H. Sohn, M. E. Nowakowski, C. Liang, J. L. Hockel, K. Wetzlar, S. Keller, B. M. McLellan, M. A. Marcus, A. Doran, A. Young, M. Klaui, G. P. Carman, J. Bokor, and R. N. Candler, ACS Nano 9, 4814 (2015).CrossRefGoogle Scholar
  6. 6.
    T. Brintlinger, S.-H. Lim, K. H. Baloch, P. Alexander, Y. Qi, J. Barry, J. Melngailis, L. Salamanca-Riba, I.  Takeuchi, and J. Cumings, Nano Lett. 10, 1219 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    M. Weiler, A. S. Brandlmaier, S. Geprägs, M. Althammer, M. Opel, C. Bihler, H. Huebl, M. S. Brandt, R. Gross, and S. T. B. Goennenwein, New J. Phys. 11, 013021 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    A. A. Bukharaev, A. K. Zvezdin, A. P. Pyatakov, and Yu. K. Fetisov, Phys.-Usp. 61, 1175 (2018).CrossRefGoogle Scholar
  9. 9.
    Q. Yang, T. Nan, Y. Zhang, Z. Zhou, B. Peng, W. Ren, Z. Ye, N. X. Sun, and M. Liu, Phys. Rev. Appl. 8, 044006 (2017).CrossRefGoogle Scholar
  10. 10.
    B. Peng, Z. Zhou, T. Nan, G. Dong, M. Feng, Q. Yang, X. Wang, S. Zhao, D. Xian, Z. Jiang, W. Ren, Z. Ye, N. X. Sun, and M. Liu, ACS Nano 11, 4337 (2017).CrossRefGoogle Scholar
  11. 11.
    Y. Sun, Y. Ba, A. Chen, A. Chen, W. He, W. Wang, X. Zheng, L. Zou, Y. Zhang, Q. Yang, L. Yan, C. Feng, Q. Zhang, J. Cai, W. Wu, et al., ACS Appl. Mater. Interfaces 9, 10855 (2017).CrossRefGoogle Scholar
  12. 12.
    P. F. Carcia, J. Appl. Phys. 63, 5066 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    W. B. Zeper and P. F. Carcia, J. Appl. Phys. 65, 4971 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. S. Gusev
    • 1
    Email author
  • I. Yu. Pashen’kin
    • 1
  • M. V. Sapozhnikov
    • 1
  • O. G. Udalov
    • 1
  • P. A. Yunin
    • 1
  1. 1.Institute for Physics of Microstructures, Russian Academy of SciencesAfoninoRussia

Personalised recommendations