Controlling the Properties of Spin–Wave Transport in a Semiring Magnon Microwavevguide
- 34 Downloads
Abstract
Spin-wave transport along a waveguide structure with disturbed translational symmetry has been investigated. A semiring portion of a magnon microwaveguide has been made of a YIG film. It has been shown that one can control the dynamic magnetization spatial distribution by varying the magnetic biasing angle in the microwaveguide plane. Under such conditions, the transmission coefficient of standing waves changes noticeably. The structure suggested in this paper allows the rotation of spin-wave signals in an irregular configuration under the conditions of surface magnetostatic wave propagation. This effect may be used in planar magnon networks.
Notes
FUNDING
This study was supported by the Russian Science Foundation (grant no. 18-79-00198), Russian Foundation for Basic Research (grant no. 18-37-20005), and grant no. MK 3650.2018.9 of the President of the Russian Federation.
CONFLICT OF INTEREST
The authors claim that they do not have any conflicts of interest.
REFERENCES
- 1.V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D 43, 264001 (2010).ADSCrossRefGoogle Scholar
- 2.V. E. Demidov, S. Urazhdin, A. Zholud, A. V. Sadovnikov, A. N. Slavin, and S. O. Demokritov, Sci. Rep. 5, 8578 (2015).ADSCrossRefGoogle Scholar
- 3.V. E. Demidov, S. Urazhdin, G. De Loubens, O. Klein, V. Cros, A. Anane, and S. O. Demokritov, Phys. Rep. 673, 1 (2017).ADSMathSciNetCrossRefGoogle Scholar
- 4.A. V. Sadovnikov, A. A. Grachev, S. E. Sheshukova, Yu. P. Sharaevskii, A. A. Serdobintsev, D. M. Mitin, and S. A. Nikitov, Phys. Rev. Lett. 120, 257203 (2018).ADSCrossRefGoogle Scholar
- 5.R. W. Damon and J. R. Eshbach, J. Phys. Chem. Solids 19, 308 (1961).ADSCrossRefGoogle Scholar
- 6.A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC, 1996).Google Scholar
- 7.D. D. Stancil and A. Prabhakar, Spin Waves: Theory and Applications (Springer, New York, 2009).zbMATHGoogle Scholar
- 8.M. S. Sodha and N. C. Srivastava, Microwave Propagation in Ferrimagnetics (Springer, New York, 1981).CrossRefGoogle Scholar
- 9.A. V. Vashkovskii, V. S. Stal’makhov, and Yu. P. Sharaevskii, Magnetostatic Waves in Microwave Electronics (Sarat. Gos. Univ., Saratov, 1993).Google Scholar
- 10.S. Chikazumi, Physics of Ferromagnetism, 2nd ed. (Oxford Univ. Press, 1997).Google Scholar
- 11.P. Clausen, K. Vogt, H. Schultheiss, S. Schäfer, and B. Obry, Appl. Phys. Lett. 99, 162505 (2011).ADSCrossRefGoogle Scholar
- 12.A. V. Sadovnikov, C. S. Davies, V. V. Kruglyak, D. V. Romanenko, S. V. Grishin, E. N. Beginin, Y. P. Sharaevskii, and S. A. Nikitov, Phys. Rev. B 96, 60401 (2017).ADSCrossRefGoogle Scholar
- 13.T. Brächer, P. Pirro, J. Westermann, T. Sebastian, B. Lagel, B. Van de Wiele, A. Vansteenkiste, and B. Hillebrands, Appl. Phys. Lett. 102, 132411 (2013).ADSCrossRefGoogle Scholar
- 14.S. Demokritov, Spin Wave Confinement: Propagating Waves, 2nd ed. (Jenny Stanford, 2017).CrossRefGoogle Scholar
- 15.S. A. Nikitov, D. V. Kalyabin, I. V. Lisenkov, A. N. Slavin, Yu. N. Barabanenkov, S. A. Osokin, A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevsky, Yu. A. Filimonov, Yu. V. Khivintsev, S. L. Vysotsky, V. K. Sakharov, and E. S. Pavlov, Phys.-Usp. 58, 1002 (2015).CrossRefGoogle Scholar
- 16.Yu. V. Gulyaev and S. A. Nikitov, Dokl. Phys. 46, 687 (2001).ADSCrossRefGoogle Scholar
- 17.R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, 1999), p. 457.Google Scholar
- 18.A. V. Sadovnikov, A. A. Grachev, S. A. Odintsov, A. A. Martyshkin, V. A. Gubanov, S. E. Sheshukova, and S. A. Nikitov, JETP Lett. 108, 312 (2018).ADSCrossRefGoogle Scholar
- 19.A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevskii, S. V. Grishin, S. E. Sheshukova, and S. A. Nikitov, App. Phys. Lett. 109, 042407 (2016).ADSCrossRefGoogle Scholar
- 20.M. A. Morozova, O. V. Matveev, and Yu. P. Sharaevskii, Phys. Solid State 58, 1967 (2016).ADSCrossRefGoogle Scholar
- 21.M. Dvornik, Y. Au, and V. V. Kruglyak, in Magnonics: From Fundamentals to Applications, Ed. by S. O. Demokritov and A. N. Slavin (Springer, 2013), p. 101.Google Scholar
- 22.M. Remouche, F. Georges, and P. Meyrueis, Opt. Photonics J. 2, 1 (2012).CrossRefGoogle Scholar
- 23.Y. Gaididei, V. P. Kravchuk, F. G. Mertens, O. V. Pylypovskyi, A. Saxena, D. D. Sheka, and O. M. Volkov, Low Temp. Phys. 44, 634 (2018).ADSCrossRefGoogle Scholar
- 24.V. S. Tkachenko, A. N. Kuchko, and V. V. Kruglyak, Low Temp. Phys. 39, 163 (2013).ADSCrossRefGoogle Scholar
- 25.S. Bance, T. Schrefl, G. Hrkac, A. Goncharov, D. A. Allwood, and J. Dean, J. Appl. Phys. 103, 07E735 (2008).Google Scholar
- 26.L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982).Google Scholar
- 27.L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).Google Scholar
- 28.A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, AIP Adv. 4, 107133 (2014).ADSCrossRefGoogle Scholar
- 29.V. E. Demidov, S. Urazhdin, A. Zholud, A. V. Sadovnikov, and S. O. Demokritov, Appl. Phys. Lett. 106, 022403 (2015).ADSCrossRefGoogle Scholar
- 30.S. O. Demokritov, B. Hillebrand, and A. N. Slasvin, Phys. Rep. 348, 441 (2001).ADSCrossRefGoogle Scholar
- 31.A. V. Sadovnikov, C. S. Davies, S. V. Grishin, V. Kruglyak, D. V. Romanenko, Yu. P. Sharaevskii, and S. A. Nikitov, Appl. Phys. Lett. 106, 192406 (2015).ADSCrossRefGoogle Scholar
- 32.A. V. Sadovnikov, S. A. Odintsov, E. N. Beginin, S. E. Sheshukova, S. A. Nikitov, Phys. Rev. B 96, 144428 (2017).ADSCrossRefGoogle Scholar
- 33.T. W. O’Keefe and R. W. Patterson, J. Appl. Phys. 49, 4886 (1978).ADSCrossRefGoogle Scholar