Advertisement

Technical Physics

, Volume 64, Issue 11, pp 1556–1559 | Cite as

Simulation of the Interaction of a Magnetic Resonance Force Microscope Probe with a Ferromagnetic Sample

  • R. V. GorevEmail author
  • E. V. Skorokhodov
  • V. L. Mironov
Article
  • 12 Downloads

Abstract

We propose an algorithm and present results of micromagnetic simulation of the resonant response of a probe pickup (cantilever) of a magnetic resonance force microscope. Simulation of induced oscillations of sample magnetization makes it possible to calculate the varying component of the force exerted on the probe by the sample and to construct spectra in the form of dependences of the amplitude of oscillations of the cantilever on the external magnetic field strength. Simulation of time dependences of all magnetization field components makes it possible to analyze the spatial distributions of spin-wave resonances of samples. For test objects in the form of rectangular permalloy microstrips, good agreement between model and experimental spectra is achieved.

Notes

FUNDING

This study was performed under State assignment for the Institute for Physics of Microstructures, Russian Academy of Sciences, for 2019 (GZ 0030-2019-0021-S-01) and by the Russian Foundation for Basic Research (project no. 18-02-00247).

CONFLICT OF INTEREST

The authors claim that there are no conflicts of interest.

REFERENCES

  1. 1.
    J. A. Sidles, Appl. Phys. Lett. 58, 2854 (1991).  https://doi.org/10.1063/1.104757 ADSCrossRefGoogle Scholar
  2. 2.
    D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Nature 430, 329 (2004).  https://doi.org/10.1038/nature02658 ADSCrossRefGoogle Scholar
  3. 3.
    C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, Proc. Natl. Acad. Sci. U. S. A. 106, 1313 (2009).  https://doi.org/10.1073/pnas.0812068106 ADSCrossRefGoogle Scholar
  4. 4.
    Nanomagnetism: Applications and Perspectives, Ed. by C. Fermon and M. Van de Voorde (Wiley, Weinheim, 2017).zbMATHGoogle Scholar
  5. 5.
    T. Mewes, J. Kim, D. V. Pelekhov, G. N. Kakazei, P. E. Wigen, S. Batra, snd P. C. Hammel, Phys. Rev. B 74, 144424 (2006).  https://doi.org/10.1103/PhysRevB.74.144424 ADSCrossRefGoogle Scholar
  6. 6.
    H.-J. Chia, F. Guo, L. M. Belova, and R. D. McMichael, Phys. Rev. B 86, 184406 (2012).  https://doi.org/10.1103/PhysRevB.86.184406 ADSCrossRefGoogle Scholar
  7. 7.
    C. Hahn, V. V. Naletov, G. de Loubens, O. Klein, O. d’Allivy Kelly, A. Anane, R. Bernard, E. Jacquet, P. Bortolotti, V. Cros, J. L. Prieto, and M. Munoz, Appl. Phys. Lett. 104, 152410 (2014).  https://doi.org/10.1063/1.4871516 ADSCrossRefGoogle Scholar
  8. 8.
    A. Volodin, C. Van Haesendonck, E. V. Skorokhodov, R. V. Gorev, and V. L. Mironov, Appl. Phys. Lett. 113, 122407 (2018).  https://doi.org/10.1063/1.5040072 ADSCrossRefGoogle Scholar
  9. 9.
    R. V. Gorev and V. L. Mironov, Phys. Solid State 59, 2174 (2017).  https://doi.org/10.1134/S1063783417110117 ADSCrossRefGoogle Scholar
  10. 10.
    E. V. Skorokhodov, M. V. Sapozhnikov, R. V. Gorev, A. P. Volodin, and V. L. Mironov, Phys. Solid State 60, 2254 (2018).  https://doi.org/10.1134/S1063783418110306 ADSCrossRefGoogle Scholar
  11. 11.
    J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).zbMATHGoogle Scholar
  12. 12.
    E. V. Skorokhodov, M. V. Sapozhnikov, A. N. Reznik, V. V. Polyakov, V. A. Bykov, A. P. Volodin, and V. L. Mironov, Instrum. Exp. Tech. 61, 761 (2018).  https://doi.org/10.1134/S0020441218040255 CrossRefGoogle Scholar
  13. 13.
    E. V. Skorokhodov, M. V. Sapozhnikov, and V. L. Mironov, Tech. Phys. Lett. 44, 203 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    M. J. Donahue and D. G. Porter, Interagency Report NISTIR 6376 (National Institute of Standards and Technology, Gaithersburg, 1999). http://math.nist.gov/oommf/.Google Scholar
  15. 15.
    R. V. Gorev, V. L. Mironov, and E. V. Skorokhodov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 10, 298 (2016).CrossRefGoogle Scholar
  16. 16.
    E. V. Skorohodov, R. V. Gorev, R. R. Yakubov, E. S. Demidov, Yu. V. Khivintsev, Yu. A. Filimonov, and V. L. Mironov, J. Magn. Magn. Mater. 424, 118 (2017).  https://doi.org/10.1016/j.jmmm.2016.10.024 ADSCrossRefGoogle Scholar
  17. 17.
    M. Bailleul, D. Olligs, and C. Fermon, Phys. Rev. Lett. 91, 137204 (2003).  https://doi.org/10.1103/PhysRevLett.91.137204 ADSCrossRefGoogle Scholar
  18. 18.
    R. D. McMichael and B. B. Maranville, Phys. Rev. B 74, 024424 (2006).  https://doi.org/10.1103/PhysRevB.74.024424 ADSCrossRefGoogle Scholar
  19. 19.
    C. Wen-Bing, H. Man-Gui, Z. Hao, O. Yu, and D. Long-Jiang, Chin. Phys. B 19, 087502 (2010).  https://doi.org/10.1088/1674-1056/19/8/087502 ADSCrossRefGoogle Scholar
  20. 20.
    M. Buess, T. Haug, M. Scheinfein, and C. Back, Phys. Rev. Lett. 94, 127205 (2005).  https://doi.org/10.1103/PhysRevLett.94.127205 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • R. V. Gorev
    • 1
    Email author
  • E. V. Skorokhodov
    • 1
  • V. L. Mironov
    • 1
  1. 1.Institute for Physics of Microstructures, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations