Advertisement

Technical Physics

, Volume 64, Issue 11, pp 1579–1583 | Cite as

Atomic-Force Microscopy of Resistive Nonstationary Signal Switching in ZrO2(Y) Films

  • D. O. FilatovEmail author
  • M. N. Koryazhkina
  • D. A. Antonov
  • I. N. Antonov
  • D. A. Liskin
  • M. A. Ryabova
  • O. N. Gorshkov
Article
  • 9 Downloads

Abstract

Local resistive switching by complex nonstationary signals in zirconium-dioxide-stabilized films on conducting substrates has been studied by atomic-force microscopy with a conducting probe. Film resistance was switched by triangular voltage pulses on which a high-frequency sinusoidal signal was superimposed. It is found that the ratio of currents through the junction between the probe and film surface in high-resistance and low-resistance states increases after the superposition of a sinusoidal signal (as compared to switching by simple triangular pulses). An increase in the temporal stability of the current strength in these states was also found when switching with a sinusoidal signal. This effect is associated with resonant activation of oxygen ion migration over vacancies in an external ac electric field.

Notes

ACKNOWLEDGMENTS

AFM experiments were performed using the facilities of the Collective Use Center, Science and Education Center Physics of Solid-State Nanostructures, Lobachevsky State University.

FUNDING

This study was supported by the Russian Foundation for Basic Research and the administration of the Nizhny Novgorod oblast (project no. 18-42-520059r_a).

CONFLICT OF INTEREST

The authors claim that there are no conflicts of interests.

REFERENCES

  1. 1.
    Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, Ed. by D. Ielmini and R. Waser (Wiley, Weinheim, 2016).Google Scholar
  2. 2.
    R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).  https://doi.org/10.1002/adma.200900375 ADSCrossRefGoogle Scholar
  3. 3.
    I. Riess, J. Electroceram. 39, 61 (2017).  https://doi.org/10.1007/s10832-017-0092-z CrossRefGoogle Scholar
  4. 4.
    D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008).  https://doi.org/10.1038/nature06932 ADSCrossRefGoogle Scholar
  5. 5.
    J. Ouyang, Emerging Resistive Switching Memories (Springer, 2016).CrossRefGoogle Scholar
  6. 6.
    Memristor and Memristive Neural Networks, Ed. by A. James (IntechOpen, Rijeka, 2018).Google Scholar
  7. 7.
    D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).  https://doi.org/10.1088/0268-1242/31/6/063002 ADSCrossRefGoogle Scholar
  8. 8.
    G. S. Park, Y. B. Kim, S. Y. Park, et al., Nat. Commun. 4, 2382 (2013).  https://doi.org/10.1038/ncomms3382 ADSCrossRefGoogle Scholar
  9. 9.
    J. S. Lee, S. Lee, and T. W. Noh, Appl. Phys. Rev. 2, 031303 (2015).  https://doi.org/10.1063/1.4929512 ADSCrossRefGoogle Scholar
  10. 10.
    L. Zhu, J. Zhou, Z. Guo, and Z. Sun, J. Materiomics 1, 285 (2015).  https://doi.org/10.1016/j.jmat.2015.07.009 CrossRefGoogle Scholar
  11. 11.
    M. Trapatseli, S. Cortese, A. Serb, et al., J. Appl. Phys. 121, 184505 (2017).  https://doi.org/10.1063/1.4983006 ADSCrossRefGoogle Scholar
  12. 12.
    K. C. Chang, T. C. Chang, T. M. Tsai, et al., Nanoscale Res. Lett. 10, 120 (2015).  https://doi.org/10.1186/s11671-015-0740-7 ADSCrossRefGoogle Scholar
  13. 13.
    C. La Torre, K. Fleck, S. Starschich, et al., Phys. Status Solidi A 213, 316 (2016).  https://doi.org/10.1002/pssa.201532375 ADSCrossRefGoogle Scholar
  14. 14.
    G. A. Patterson, P. I. Fierens, and D. F. Grosz, Appl. Phys. Lett. 103, 74102 (2013).  https://doi.org/10.1063/1.4819018 CrossRefGoogle Scholar
  15. 15.
    H. A. Abbas, Stabilized Zirconia for Solid Oxide Fuel Cells or Oxygen Sensors: Characterization of Structural and Electrical Properties of Zirconia Doped with Some Oxides (LAP Lambert, 2012).Google Scholar
  16. 16.
    M. Lanza, Conductive Atomic Force Microscopy: Applications in Nanomaterials (Wiley, Weinheim, 2017).CrossRefGoogle Scholar
  17. 17.
    S. Ambrogio, B. Magyari-Kope, N. Onofrio, et al., J. Electroceram. 39, 39 (2017).  https://doi.org/10.1007/s10832-017-0093-y CrossRefGoogle Scholar
  18. 18.
    D. O. Filatov, D. A. Antonov, O. N. Gorshkov, et al., in Atomic Force Microscopy (AFM): Principles, Modes of Operation and Limitations, Ed. by H. Yang (Nova Science, New York, 2014), pp. 335–355.Google Scholar
  19. 19.
    J. Y. Seok, S. J. Song, J. H. Yoon, et al., Adv. Funct. Mater. 24, 5316 (2014).  https://doi.org/10.1002/adfm.201303520 CrossRefGoogle Scholar
  20. 20.
    M. Lanza, Materials 7, 2155 (2014).  https://doi.org/10.3390/ma7032155 ADSCrossRefGoogle Scholar
  21. 21.
    S. Tikhov, O. Gorshkov, I. Antonov, et al., Adv. Condens. Matter Phys. 2018, 2028491 (2018).  https://doi.org/10.1155/2018/2028491 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. O. Filatov
    • 1
    Email author
  • M. N. Koryazhkina
    • 1
  • D. A. Antonov
    • 1
  • I. N. Antonov
    • 1
  • D. A. Liskin
    • 1
  • M. A. Ryabova
    • 1
  • O. N. Gorshkov
    • 1
  1. 1.Lobachevsky State UniversityNizhny NovgorodRussia

Personalised recommendations