Advertisement

Technical Physics

, Volume 64, Issue 11, pp 1673–1679 | Cite as

Optimization of Composition, Synthesis, and Study of Broadband Multilayer Mirrors for the EUV Spectral Range

  • M. M. BaryshevaEmail author
  • S. A. Garakhin
  • S. Yu. Zuev
  • V. N. Polkovnikov
  • N. N. Salashchenko
  • M. V. Svechnikov
  • R. M. Smertin
  • N. I. Chkhalo
  • E. Meltchakov
Article
  • 6 Downloads

Abstract

Broadband Mo/Si and Mo/Be multilayer stack-type mirrors for wavelength intervals of 11.1–13.8, 17–21, and 28–33 nm have been developed and fabricated. Uniform reflection of such structures can be implemented using few corrections of technological process.

Notes

FUNDING

This work was supported by the Presidium of the Russian Academy of Sciences (Program “Extreme Optical Fields and Interaction with Matter”) and Russian Foundation for Basic Research (project no. 18-32-00173 (development of the Multifitting software), project no. 17-52-150006 (deposition of experimental samples), and project no. 18-32-00671 (measurement of reflectances at a wavelength of 0.154 nm).

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

  1. 1.
    Aperiodic Elements in Soft X-Ray Optics, Ed. by E. N. Ragozin (Fizmatlit, Moscow, 2018).Google Scholar
  2. 2.
    V. Shestov, S. Ulyanov, and E. Vishnyakov, Proc. SPIE 9144, 91443G1 (2002).Google Scholar
  3. 3.
    S. Yulin, Proc. SPIE 4782, 196 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    E. A. Vishnyakov, F. F. Kamenets, V. V. Kondratenko, et al., Quantum Electron. 42, 143 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    K. D. Joensen, P. Gorenstein, J. L. Wood, and F. E. Christensen, Proc. SPIE 2279, 180 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    I. V. Kozhevnikov, I. N. Bukreeva, and E. Ziegler, Nucl. Instrum. Methods Phys. Res., Sect. A 460, 424 (2001).Google Scholar
  7. 7.
    E. Ziegler, I. N. Bukreeva, I. V. Kozhevnikov, A. S. Pirozhkov, and E. N. Ragozin, Proc. SPIE 3737, 386 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    I. L. Beigman, A. S. Pirozhkov, and E. N. Ragozin, JETP Lett. 74, 149 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    P. K. Gaikovich, V. N. Polkovnikov, N. N. Salashchenko, N. I. Chkhalo, F. Shefers, and A. Sokolov, Quantum Electron. 46, 406 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    T. Kuhlmann, S. Yulin, T. Feigl, N. Kaiser, H. Bernitzki, and H. Lauth, Proc. SPIE 4688, 509 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    A. D. Akhsakhalyan, E. B. Kluenkov, A. Ya. Lopatin, V. I. Luchin, A. N. Nechay, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, M. V. Svechnikov, M. N. Toropov, N. N. Tsybin, N. I. Chkhalo, and A. V. Shcherbakov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11, 1 (2017).CrossRefGoogle Scholar
  12. 12.
    V. Banine, J. P. Benschop, M. Leenders, and R. Moors, Proc. SPIE 3997, 126 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    S. Braun, H. Mai, M. Moss, R. Scholz, and A. Leson, Jpn. J. Appl. Phys. 41, 4074 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    M. V. Svechnikov, N. I. Chkhalo, S. A. Gusev, A. N. Nechay, D. E. Pariev, A. E. Pestov, V. N. Polkovnikov, D. A. Tatarskiy, N. N. Salashchenko, F. Schäfers, M. G. Sertsu, A. Sokolov, Y. A. Vainer, and M. V. Zorina, Opt. Express 26, 33718 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    N. I. Chkhalo, S. A. Gusev, A. N. Nechay, D. E. Pariev, V. N. Polkovnikov, F. Salashchenko, N. N. Schäfers, M. G. Sertsu, A. Sokolov, M. V. Svechnikov, and D. A. Tatarsky, Opt. Lett. 42, 5070 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    M. Svechnikov, D. Pariev, A. Nechay, N. Salashchenko, N. Chkhalo, Y. Vainer, and D. Gaman, J. Appl. Crystallogr. 50, 1428 (2017).CrossRefGoogle Scholar
  17. 17.
    M. V. Svechnikov, Proc. XXIII Symp. “Nanophysics and Nanoelectronics,” Nizhny Novgorod, Russia,2019, Vol. 1, p. 519.Google Scholar
  18. 18.
    D. Windt, Comput. Phys. 12, 360 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    S. Kuang, S. Li, H. Yang, T. Huo, and H. Zhou, Opt. Precis. Eng. 26, 2395 (2018).CrossRefGoogle Scholar
  20. 20.
    Y. Yao, H. Kunieda, and Z. Wang, Opt. Express 21, 8638 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    M. M. Barysheva, Yu. A. Vainer, B. A. Gribkov, M. V. Zorina, A. E. Pestov, D. N. Rogachev, N. N. Salashchenko, and N. I. Chkhalo, Bull. Russ. Acad. Sci.: Phys. 75, 67 (2011).CrossRefGoogle Scholar
  22. 22.
    S. S. Andreev, A. D. Akhsakhalyan, M. A. Bibishkin, N. I. Chkhalo, S. V. Gaponov, S. A. Gusev, E. B. Kluenkov, K. A. Prokhorov, N. N. Salashchenko, F. Schafers, and S. Yu. Zuev, Cent. Eur. J. Phys. 1, 191 (2003).Google Scholar
  23. 23.
    S. A. Garakhin, A. N. Nechai, N. I. Chkhalo, N.  N.  Salashchenko, S. Yu. Zuev, I. G. Zabrodin, I. A. Kas’kov, A. E. Pestov, and V. N. Polkovnikov, Proc. XXIII Symp. “Nanophysics and Nanoelectronics,” Nizhny Novgorod, Russia,2019, Vol. 1, p. 447.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. M. Barysheva
    • 1
    Email author
  • S. A. Garakhin
    • 1
  • S. Yu. Zuev
    • 1
  • V. N. Polkovnikov
    • 1
  • N. N. Salashchenko
    • 1
  • M. V. Svechnikov
    • 1
  • R. M. Smertin
    • 1
  • N. I. Chkhalo
    • 1
  • E. Meltchakov
    • 2
  1. 1.Institute for Physics of Microstructures, Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Laboratoire Charles Fabry, Institut d’Optique Graduate SchoolPalaiseauFrance

Personalised recommendations