Advertisement

Technical Physics

, Volume 64, Issue 8, pp 1161–1163 | Cite as

Structural Transformations in Iron Borate under High-Temperature Annealing

  • S. V. Yagupov
  • N. I. Snegirev
  • K. A. Seleznyova
  • E. T. Milyukova
  • Yu. A. Mogilenec
  • Yu. V. Ermolaev
  • M. B. StrugatskyEmail author
PHYSICAL SCIENCE OF MATERIALS
  • 4 Downloads

Abstract

Scanning electron microscopy and X-ray diffractometry are used to study surface morphology and crystal structure of iron borate FeBO3 annealed at different temperatures. Temperature limits of the structural stability are determined. It is shown that recrystallization to iron orthoborate Fe3BO6 and hematite α-Fe2O3 takes places at temperatures of 800–900°C and above 900°C, respectively.

Notes

FUNDING

This work was partially supported by the Russian Foundation for Basic Research in the framework of scientific project Grant no. 18-32-00210 “mol_a” (annealing experiments) and by the V.I. Vernadsky Crimean Federal University Development Program for 2015−2024.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

  1. 1.
    I. Edelman and J. Kliava, Phys. Status Solidi B 246, 2216 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    D. Afanasiev, I. Razdolski, K. M. Skibinsky, D. Bolotin, S. V. Yagupov, M. Strugatsky, A. Kirilyuk, Th. Rasing, and A. V. Kimel, Phys. Rev. Lett. 112, 147403 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    M. Eibshutz and M. Lines, Phys. Rev. B 7, 4907 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    V. Glazkov, S. Kichanov, D. Kozlenko, B. Savenko, and V. Somenkov, J. Magn. Magn. Mater. 258, 543 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    R. Diehl, W. Jantz, B. I. Nolang, and W. Wettling, Curr. Top. Mater. Sci. 11, 241 (1984).Google Scholar
  6. 6.
    J. G. White, A. Miller, and R. E. Nielsen, Acta Crystallogr. 19, 1060 (1965).CrossRefGoogle Scholar
  7. 7.
    G. Rollmann, A. Rohrbach, P. Entel, and J. Hafner, Phys. Rev. B 69, 165107 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    A. Pankratov, M. Strugatskii, and S. Yagupov, Uch. Zap. Tavricheskogo Nats. Univ. Fiz. 20 (1), 64 (2007).Google Scholar
  9. 9.
    S. Yagupov, M. Strugatsky, K. Seleznyova, E. Maksimova, I. Nauhatsky, V. Yagupov, E. Milyukova, and J. Kliava, Appl. Phys. A 121, 179 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    J. L. Rowsell, J. Gaubicher, and L. Nazar, J. Power Sources 97–98, 254 (2001).Google Scholar
  11. 11.
    S. Okada, T. Tonuma, Y. Uebo, and J. Yamaki, J. Power Sources. 119–121, 621 (2003).CrossRefGoogle Scholar
  12. 12.
    A. Ibarra-Palos, C. Darie, O. Proux, J. L. Hazemann, L. Aldon, J. C. Jumas, M. Morcrette, and P. Strobel, Chem. Mater. 14, 1166 (2002).CrossRefGoogle Scholar
  13. 13.
    V. E. Zubov, G. S. Krinchik, V. N. Seleznyov, and M. B. Strugatsky, J. Magn. Magn. Mater. 86, 105 (1990).ADSCrossRefGoogle Scholar
  14. 14.
    V. Potapkin, A. I. Chumakov, G. V. Smirnov, J.-P. Celse, R. Ruffer, C. McCammon, and L. Dubrovinsky, J. Synchrotron Radiat. 19, 559 (2012).CrossRefGoogle Scholar
  15. 15.
    V. Potapkin, A. I. Chumakov, G. V. Smirnov, R. Rüffer, C. McCammon, and L. Dubrovinsky, Phys. Rev. A 86, 053808 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    J. Joubert, W. White, and R. Roy, Mater. Res. Bull. 3, 671 (1968).CrossRefGoogle Scholar
  17. 17.
    H. Makram, L. Touron, and J. Loriers, J. Crystal Growth 13–14, 595 (1972).Google Scholar
  18. 18.
    https://icsd.fiz-karlsruhe.de.Google Scholar
  19. 19.
    R. I. Zvereva, E. L. Dukhovskaya, and Yu. L. Sapozhnikov, Izv. Akad. Nauk SSSR. Neorg. Mater. 11, 282 (1975).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. V. Yagupov
    • 1
  • N. I. Snegirev
    • 1
  • K. A. Seleznyova
    • 1
  • E. T. Milyukova
    • 1
  • Yu. A. Mogilenec
    • 1
  • Yu. V. Ermolaev
    • 2
  • M. B. Strugatsky
    • 1
    Email author
  1. 1.Physics and Technology Institute, V.I. Vernadsky Crimean Federal UniversitySimferopolRussia
  2. 2.Satbayev UniversityAlmatyKazakhstan

Personalised recommendations