Advertisement

Technical Physics

, Volume 64, Issue 8, pp 1205–1209 | Cite as

Charging of Ion-Implanted Dielectrics by Electron Irradiation

  • E. I. RauEmail author
  • A. A. Tatarintsev
  • E. Yu. Zykova
  • S. V. Zaitsev
PHYSICAL ELECTRONICS
  • 1 Downloads

Abstract

The charging kinetics of Al2O3 (sapphire) and SiO2 (α-quartz) dielectrics irradiated by inert gas ions (Ar+), metal ions (Ga+), and protons (H+) has been studied. It has been found that charging kinetics depends considerably on the type of irradiating ion. Also, it has been established that preirradiation of a dielectric target by an ionizing corpuscular radiation (protons, ions) substantially changes the charge characteristics of the dielectric surface. These differences depend on irradiating ion energy, which governs the depth of an accumulated negative charge layer versus the depth of ion preimplantation.

Notes

FUNDING

This study was supported by the Russian Foundation for Basic Research, grant no. 18-02-00813A.

CONFLICT OF INTEREST

The authors claim that there is no conflict of interest.

REFERENCES

  1. 1.
    J. Liebault, D. Siesse-Moya, F. Moya, K. Zarbout, G. Damamme, and G. Moya, in Proc. Conf. on Electrical Insulation and Dielectric Phenomena, Cancun, Quintana Roo, Mexico, 2002, p. 652.Google Scholar
  2. 2.
    D. W. Vance, in Proc. Conf. on Electrical Insulation and Dielectric Phenomena, Pocono Manor, United States, 1970, p. 1.Google Scholar
  3. 3.
    E. I. Rau, A. A. Tatarintsev, E. Yu. Zykova, I. P. Ivanenko, S. Yu. Kupreenko, K. F. Minnebaev, and A. A. Khaidarov, Phys. Solid State 59, 1526 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    E. I. Rau, A. A. Tatarintsev, V. V. Khvostov, and V. E. Yurasova, Vacuum 129, 142 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    F. A. Kröger, in Structure and Properties of MgO and Al 2 O 3 Ceramics, Ed. by W. D. Kingery (American Ceramic Society, Columbus, 1984), p. 1.Google Scholar
  6. 6.
    E. Alves, M. F. da Silva, J. G. Marques, J. C. Soares, and K. Freitag, Nucl. Instrum. Methods Phys. Res., Sect. B 141, 353 (1998).Google Scholar
  7. 7.
    E. Alves, C. Marques, R. C. da Silva, T. Monteiro, and C. McHargue, Surf. Coat. Technol. 203, 2357 (2009).CrossRefGoogle Scholar
  8. 8.
    V. Privezentsev, A. Goryachev, and K. Shcherbachev, in Proc. World Congress on New Technologies, Barcelona, Spain, 2015, p. 453.Google Scholar
  9. 9.
    S. Yogev, J. Levin, M. Molotskii, A. Schwarzman, O. Avayu, and Y. Rosenwaks, J. Appl. Phys. 103, 064107 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    http://www.srim.org.Google Scholar
  11. 11.
    J. Cazaux, J. Appl. Phys. 89, 8265 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    A. Melchinger and S. Hofmann, J. Appl. Phys. 78, 6224 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. I. Rau
    • 1
    • 2
    Email author
  • A. A. Tatarintsev
    • 1
  • E. Yu. Zykova
    • 1
  • S. V. Zaitsev
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations