Technical Physics

, Volume 64, Issue 5, pp 730–736 | Cite as

Dependence of Texture Tilt and Excitation Efficiency of Shear Waves for ZnO Films on Working Gas Pressure in a DC Magnetron System

  • A. G. VeselovEmail author
  • V. I. Elmanov
  • O. A. Kiryasova
  • Yu. V. Nikulin


Dependence of the texture tilt and excitation efficiency of shear waves on the working gas pressure in an interval of 0.14–0.74 mTorr that corresponds to the transition from collisionless to almost diffusion deposition is studied for the ZnO films with a thickness of about 0.45–1.2 μm that are synthesized in a planar dc magnetron system. It is shown that an increase in the pressure from about 0.14–0.24 to 0.74 mTorr causes a decrease in the tilt angle of the column texture from ~25°–27° to ~7° and a decrease in the efficiency of acoustic excitation. Films that are synthesized at pressures of ~0.14–0.24 mTorr close to the transition from the Townsend to glow discharge exhibit the highest excitation efficiency of shear waves. For such films, the insertion loss reaches a minimum level at thicknesses of 0.45–0.75 μm and the number of echo pulses amounts to 20–40, so that the reflected sound can be observed with a delay of up to 80 μs at a length of an acoustic guiding crystal of 10 mm.



The work was carried out within the framework of the state task and partially was supported by Russian Foundation for Basic Research, projects nos. 16-37-60052, 16-29-14058.


  1. 1.
    G. Rughoobur, M. De Miguel-Ramos, T. Mirea, M. Clement, J. Olivares, B. Díaz-Durán, J. Sangrador, I. Miele, W. I. Milne, E. Iborra, and A. J. Flewitt, Appl. Phys. Lett. 108, 034103 (2016). CrossRefGoogle Scholar
  2. 2.
    G. Rughoobur, L. Garcia-Gancedo, A. J. Flewitt, W. I. Milne, M. De Miguel-Ramos, M. Clement, T. Mirea, J. Olivares, and E. Iborra, Proc. European Frequency and Time Forum, Neuchatel, Switzerland, 2014, p. 297.
  3. 3.
    Y. Yoshino, J. Appl. Phys. 105, 061623 (2009). CrossRefGoogle Scholar
  4. 4.
    M. Prasad, V. Sahula, and V. K. Khanna, IEEE Trans. Device Mater. Reliab. 14, 545 (2014). CrossRefGoogle Scholar
  5. 5.
    M. Link, M. Schreiter, J. Weber, R. Gabl, D. Pitzer, R. Primig, W. Wersing, M. B. Assouar, and O. Elmazria, J. Vac. Sci. Technol., A 24, 218 (2006). CrossRefGoogle Scholar
  6. 6.
    A. L. Nalamwar, R. S. Wagers, and M. Epstein, J. Appl. Phys. 48, 2175 (1977). CrossRefGoogle Scholar
  7. 7.
    Z. Yan, X. Y. Zhou, G. K. H. Pang, T. Zhang, W. L. Liu, J. G. Cheng, Z. T. Song, S. L. Feng, L. H. Lai, J. Z. Chen, and Y. Wang, Appl. Phys. Lett. 90, 143503 (2007). CrossRefGoogle Scholar
  8. 8.
    L. Qin, Q. Chen, H. Cheng, Q. Chen, J.-F. Li, and Q.-M. Wang, J. Appl. Phys. 110, 094511 (2011). CrossRefGoogle Scholar
  9. 9.
    M. Dwivedi, J. Bhargava, A. Sharma, V. Vimal, G. Eranna, IEEE Sens. J. 14, 1577 (2014). CrossRefGoogle Scholar
  10. 10.
    S. G. Alekseev, Yu. V. Gulyaev, I. M. Kotelyanskii, and G. D. Mansfel’d, Phys.-Usp. 48, 855 (2005).CrossRefGoogle Scholar
  11. 11.
    F. S. Hickernell, Proc. IEEE 64, 631 (1976).CrossRefGoogle Scholar
  12. 12.
    L. A. Coldren, Proc. IEEE 64, 769 (1976).CrossRefGoogle Scholar
  13. 13.
    Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005). CrossRefGoogle Scholar
  14. 14.
    K.-L. Ching, G. Li, Y.-L. Ho, and H.-S. Kwok, CrystEngComm 18, 779 (2016). CrossRefGoogle Scholar
  15. 15.
    A. B. Djurisic, A. M. C. Ng, and X. Y. Chen, Prog. Quantum Electron. 34, 191 (2010). CrossRefGoogle Scholar
  16. 16.
    N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, J. Cryst. Growth 130, 269 (1993).CrossRefGoogle Scholar
  17. 17.
    T. Kawamoto, T. Yanagitani, M. Matsukawa, and Y. Watanabe, Jpn. J. Appl. Phys. 46, 4660 (2007). CrossRefGoogle Scholar
  18. 18.
    S. Takayanagi, T. Yanagitani, M. Matsukawa, and Y. Watanabe, Proc. IEEE Int. Ultrasonics Symp., San Diego, United States, 2010, p. 1060.
  19. 19.
    S. Takayanagi, T. Yanagitani, M. Matsukawa, and Y. Watanabe, Proc. IEEE Int. Ultrasonics Symp., Orlando, United States, 2011, p. 2317.
  20. 20.
    T. Yanagitani, N. Mishima, M. Matsukawa, and Y. Watanabe, IEEE Trans. Ultrason., Ferroelectr, Freq. Control 54, 701 (2007). CrossRefGoogle Scholar
  21. 21.
    T. Yanagitani, M. Kiuchi, M. Matsukawa, and Y. Watanabe, IEEE Trans. Ultrason., Ferroelectr, Freq. Control 54, 1680 (2007). CrossRefGoogle Scholar
  22. 22.
    H. W. Lehmann and R. Widmer, J. Appl. Phys. 44, 3868 (1973). CrossRefGoogle Scholar
  23. 23.
    Z. Zhao, C. Pan, C. Gao, and C. Wang, Proc. IEEE Int. Vacuum Electronics Conf., Beijing, China, 2015.
  24. 24.
    A. G. Veselov, V. I. Elmanov, O. A. Kiryasova, and Yu. V. Nikulin, Tech. Phys. 62, 470 (2017). Scholar
  25. 25.
    A. G. Veselov, V. I. Elmanov, O. A. Kiryasova, and Yu. V. Nikulin, Tech. Phys. 63, 95 (2018). Scholar
  26. 26.
    M. Minakata, N. Chubachi, and Y. Kikichi, Jpn. J. Phys. 12, 474 (1973).CrossRefGoogle Scholar
  27. 27.
    T. Yanagitani and M. Kiuchi, J. Appl. Phys. 102, 044115 (2007). CrossRefGoogle Scholar
  28. 28.
    T. Yanagitani and M. Kiuchi, Proc. IEEE Ultrasonics Symp., New York, United States, 2007, p. 1413.Google Scholar
  29. 29.
    R. E. Somekh, J. Vac. Sci. Technol., A 2, 1285 (1984). CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. G. Veselov
    • 1
    Email author
  • V. I. Elmanov
    • 1
  • O. A. Kiryasova
    • 1
  • Yu. V. Nikulin
    • 1
    • 2
  1. 1.Kotel’nikov Institute of Radio Engineering and Electronics (Saratov Branch), Russian Academy of SciencesSaratovRussia
  2. 2.Chernyshevsky State UniversitySaratovRussia

Personalised recommendations