Advertisement

Technical Physics

, Volume 64, Issue 5, pp 730–736 | Cite as

Dependence of Texture Tilt and Excitation Efficiency of Shear Waves for ZnO Films on Working Gas Pressure in a DC Magnetron System

  • A. G. VeselovEmail author
  • V. I. Elmanov
  • O. A. Kiryasova
  • Yu. V. Nikulin
PHYSICAL ELECTRONICS
  • 1 Downloads

Abstract

Dependence of the texture tilt and excitation efficiency of shear waves on the working gas pressure in an interval of 0.14–0.74 mTorr that corresponds to the transition from collisionless to almost diffusion deposition is studied for the ZnO films with a thickness of about 0.45–1.2 μm that are synthesized in a planar dc magnetron system. It is shown that an increase in the pressure from about 0.14–0.24 to 0.74 mTorr causes a decrease in the tilt angle of the column texture from ~25°–27° to ~7° and a decrease in the efficiency of acoustic excitation. Films that are synthesized at pressures of ~0.14–0.24 mTorr close to the transition from the Townsend to glow discharge exhibit the highest excitation efficiency of shear waves. For such films, the insertion loss reaches a minimum level at thicknesses of 0.45–0.75 μm and the number of echo pulses amounts to 20–40, so that the reflected sound can be observed with a delay of up to 80 μs at a length of an acoustic guiding crystal of 10 mm.

Notes

FUNDING

The work was carried out within the framework of the state task and partially was supported by Russian Foundation for Basic Research, projects nos. 16-37-60052, 16-29-14058.

REFERENCES

  1. 1.
    G. Rughoobur, M. De Miguel-Ramos, T. Mirea, M. Clement, J. Olivares, B. Díaz-Durán, J. Sangrador, I. Miele, W. I. Milne, E. Iborra, and A. J. Flewitt, Appl. Phys. Lett. 108, 034103 (2016).  https://doi.org/10.1063/1.4940683 CrossRefGoogle Scholar
  2. 2.
    G. Rughoobur, L. Garcia-Gancedo, A. J. Flewitt, W. I. Milne, M. De Miguel-Ramos, M. Clement, T. Mirea, J. Olivares, and E. Iborra, Proc. European Frequency and Time Forum, Neuchatel, Switzerland, 2014, p. 297.  https://doi.org/10.1109/EFTF.2014.7331491
  3. 3.
    Y. Yoshino, J. Appl. Phys. 105, 061623 (2009).  https://doi.org/10.1063/1.3072691 CrossRefGoogle Scholar
  4. 4.
    M. Prasad, V. Sahula, and V. K. Khanna, IEEE Trans. Device Mater. Reliab. 14, 545 (2014).  https://doi.org/10.1109/TDMR.2013.2271245 CrossRefGoogle Scholar
  5. 5.
    M. Link, M. Schreiter, J. Weber, R. Gabl, D. Pitzer, R. Primig, W. Wersing, M. B. Assouar, and O. Elmazria, J. Vac. Sci. Technol., A 24, 218 (2006).  https://doi.org/10.1116/1.2165658 CrossRefGoogle Scholar
  6. 6.
    A. L. Nalamwar, R. S. Wagers, and M. Epstein, J. Appl. Phys. 48, 2175 (1977).  https://doi.org/10.1063/1.324017 CrossRefGoogle Scholar
  7. 7.
    Z. Yan, X. Y. Zhou, G. K. H. Pang, T. Zhang, W. L. Liu, J. G. Cheng, Z. T. Song, S. L. Feng, L. H. Lai, J. Z. Chen, and Y. Wang, Appl. Phys. Lett. 90, 143503 (2007).  https://doi.org/10.1063/1.2719149 CrossRefGoogle Scholar
  8. 8.
    L. Qin, Q. Chen, H. Cheng, Q. Chen, J.-F. Li, and Q.-M. Wang, J. Appl. Phys. 110, 094511 (2011).  https://doi.org/10.1063/1.3657781 CrossRefGoogle Scholar
  9. 9.
    M. Dwivedi, J. Bhargava, A. Sharma, V. Vimal, G. Eranna, IEEE Sens. J. 14, 1577 (2014).  https://doi.org/10.1109/JSEN.2014.2298879 CrossRefGoogle Scholar
  10. 10.
    S. G. Alekseev, Yu. V. Gulyaev, I. M. Kotelyanskii, and G. D. Mansfel’d, Phys.-Usp. 48, 855 (2005).CrossRefGoogle Scholar
  11. 11.
    F. S. Hickernell, Proc. IEEE 64, 631 (1976).CrossRefGoogle Scholar
  12. 12.
    L. A. Coldren, Proc. IEEE 64, 769 (1976).CrossRefGoogle Scholar
  13. 13.
    Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).  https://doi.org/10.1063/1.1992666 CrossRefGoogle Scholar
  14. 14.
    K.-L. Ching, G. Li, Y.-L. Ho, and H.-S. Kwok, CrystEngComm 18, 779 (2016).  https://doi.org/10.1039/C5CE02164B CrossRefGoogle Scholar
  15. 15.
    A. B. Djurisic, A. M. C. Ng, and X. Y. Chen, Prog. Quantum Electron. 34, 191 (2010).  https://doi.org/10.1016/j.pquantelec.2010.04.001 CrossRefGoogle Scholar
  16. 16.
    N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, J. Cryst. Growth 130, 269 (1993).CrossRefGoogle Scholar
  17. 17.
    T. Kawamoto, T. Yanagitani, M. Matsukawa, and Y. Watanabe, Jpn. J. Appl. Phys. 46, 4660 (2007).  https://doi.org/10.1143/JJAP.46.4660 CrossRefGoogle Scholar
  18. 18.
    S. Takayanagi, T. Yanagitani, M. Matsukawa, and Y. Watanabe, Proc. IEEE Int. Ultrasonics Symp., San Diego, United States, 2010, p. 1060.  https://doi.org/10.1109/ULTSYM.2010.5935655
  19. 19.
    S. Takayanagi, T. Yanagitani, M. Matsukawa, and Y. Watanabe, Proc. IEEE Int. Ultrasonics Symp., Orlando, United States, 2011, p. 2317.  https://doi.org/10.1109/ULTSYM.2011.0575
  20. 20.
    T. Yanagitani, N. Mishima, M. Matsukawa, and Y. Watanabe, IEEE Trans. Ultrason., Ferroelectr, Freq. Control 54, 701 (2007).  https://doi.org/10.1109/TUFFC.2007.303 CrossRefGoogle Scholar
  21. 21.
    T. Yanagitani, M. Kiuchi, M. Matsukawa, and Y. Watanabe, IEEE Trans. Ultrason., Ferroelectr, Freq. Control 54, 1680 (2007).  https://doi.org/10.1109/TUFFC.2007.439 CrossRefGoogle Scholar
  22. 22.
    H. W. Lehmann and R. Widmer, J. Appl. Phys. 44, 3868 (1973).  https://doi.org/10.1063/1.1662864 CrossRefGoogle Scholar
  23. 23.
    Z. Zhao, C. Pan, C. Gao, and C. Wang, Proc. IEEE Int. Vacuum Electronics Conf., Beijing, China, 2015.  https://doi.org/10.1109/IVEC.2015.7224023
  24. 24.
    A. G. Veselov, V. I. Elmanov, O. A. Kiryasova, and Yu. V. Nikulin, Tech. Phys. 62, 470 (2017). https://doi.org/10.1134/S1063784217030264CrossRefGoogle Scholar
  25. 25.
    A. G. Veselov, V. I. Elmanov, O. A. Kiryasova, and Yu. V. Nikulin, Tech. Phys. 63, 95 (2018). https://doi.org/10.1134/S1063784218010279CrossRefGoogle Scholar
  26. 26.
    M. Minakata, N. Chubachi, and Y. Kikichi, Jpn. J. Phys. 12, 474 (1973).CrossRefGoogle Scholar
  27. 27.
    T. Yanagitani and M. Kiuchi, J. Appl. Phys. 102, 044115 (2007).  https://doi.org/10.1063/1.2772589 CrossRefGoogle Scholar
  28. 28.
    T. Yanagitani and M. Kiuchi, Proc. IEEE Ultrasonics Symp., New York, United States, 2007, p. 1413.Google Scholar
  29. 29.
    R. E. Somekh, J. Vac. Sci. Technol., A 2, 1285 (1984).  https://doi.org/10.1116/1.572396 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. G. Veselov
    • 1
    Email author
  • V. I. Elmanov
    • 1
  • O. A. Kiryasova
    • 1
  • Yu. V. Nikulin
    • 1
    • 2
  1. 1.Kotel’nikov Institute of Radio Engineering and Electronics (Saratov Branch), Russian Academy of SciencesSaratovRussia
  2. 2.Chernyshevsky State UniversitySaratovRussia

Personalised recommendations