Advertisement

Technical Physics

, Volume 64, Issue 5, pp 635–641 | Cite as

Destabilization of High-Speed Jet Penetration into Brittle Materials

  • B. V. RumyantsevEmail author
SOLID STATE
  • 4 Downloads

Abstract

The results of penetration of a high-speed metal jet (with a velocity of 3–7 km/s) into brittle materials (ceramics and glass) have been analyzed. The data on jet destabilization as a result of the response of the brittle material to the high-speed penetration are presented. The generalized dependence of the high-speed jet absorption efficiency on the bending strength of the brittle material has been constructed in the hydrodynamic approximation.

Notes

ACKNOWLEDGMENTS

The authors thank S.A. Dushenok, A.I. Mikhailin, M.P. Kuzhel, and A.I. Ovsienko for their help in material provision for experiments.

REFERENCES

  1. 1.
    Z. Rosenberg and E. Dekel, Terminal Ballistics (Springer, 2012).CrossRefGoogle Scholar
  2. 2.
    V. A. Grigoryan, A. N. Beloborod’ko, N. S. Dorokhov, et al., in Specific Issues of Terminal Ballistics, Ed. by V. A. Grigoryan (Mosk. Gos. Tekh. Univ., Moscow, 2006), p. 592.Google Scholar
  3. 3.
    M. Held, Propellants, Explos., Pyrotech. 23, 105 (1998).CrossRefGoogle Scholar
  4. 4.
    A. A. Kozhushko, A. I. Kozachuk, B. V. Rumyantsev, A. B. Sinani, A. S. Vlasov, and E. L. Zilberbrand, Int. J. Impact Eng. 29, 385 (2003).CrossRefGoogle Scholar
  5. 5.
    B. V. Rumyantsev, Tech. Phys. 54, 790 (2009).CrossRefGoogle Scholar
  6. 6.
    G. E. Hauver, P. H. Netherwood, R. F. Bensk, and A. Melani, Report No. BRL-TR-3273 (Ballistic Research Lab., Maryland, 1991).Google Scholar
  7. 7.
    U. Hornemann and A. Holzwarth, Int. J. Impact Eng. 20, 375 (1997).CrossRefGoogle Scholar
  8. 8.
    B. Moran, L. A. Glenn, and A. Kusubov, J. Phys. III 1, 147 (1991).Google Scholar
  9. 9.
    Y.-L. Xie, H.-W. Liu, and Y. Zhang, Proc. Int. Conf. on Applied Mathematics and Mechanics, Bangkok, Thailand, 2016, p. 173.Google Scholar
  10. 10.
    V. B. Lazarev, A. S. Balankin, A. D. Izotov, and A. A. Kozhushko, Structural Stability and Dynamic Strength of Inorganic Materials (Nauka, Moscow, 1993).Google Scholar
  11. 11.
    Ch. E. Ahderson, V. Hohler, J. D. Walker, and A. J. Stilp, Proc. 14th Int. Symp. on Ballistics, Quebec, Canada, 1993, p. 145.Google Scholar
  12. 12.
    A. A. Kozhushko, A. L. Kozachuk, B. V. Rumyantsev, A. B. Sinani, and A. S. Vlasov, Proc. 20th Int. Symp. on Ballistics, Orlando, United States, 2002, p. 988.Google Scholar
  13. 13.
    B. V. Rumyantsev, Phys. Solid State 53, 2126 (2011).CrossRefGoogle Scholar
  14. 14.
    B. V. Rumyantsev, Proc. Int. Conf. “XI Khariton Topical Scientific Readings,” Sarov, Russia, 2009, p. 505.Google Scholar
  15. 15.
    C. G. Andreev, A. V. Babkin, F. A. Baum, et al., in Explosion Phhysics, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2002), Vol. 2, p. 238.Google Scholar
  16. 16.
    A. S. Savinykh, G. V. Garkushin, S. V. Razorenov, and V. I. Rumyantsev, Tech. Phys. 60, 863 (2015).CrossRefGoogle Scholar
  17. 17.
    E. A. Hirsh, Propellants, Explos., Pyrotech. 4 (14), 89 (1979).CrossRefGoogle Scholar
  18. 18.
    B. V. Rumyantsev and V. Yu. Klimenko, AIP Conf. Proc. 1426, 56 (2012).CrossRefGoogle Scholar
  19. 19.
    Tables of Physical Quantities, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976), p. 1006.Google Scholar
  20. 20.
    U. Hornemann, Proc. 11th Int. Symp. on Ballistics, Brussels, Belgium, 1989, Vol. 2, p. 381.Google Scholar
  21. 21.
    B. V. Rumyantsev, Tech. Phys. Lett. 42, 923 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations