Technical Physics

, Volume 64, Issue 5, pp 720–729 | Cite as

Physical Operating Principles of Palladium–Barium Cathodes of Microwave Devices

  • V. I. KapustinEmail author
  • I. P. Li
  • A. V. Shumanov
  • S. O. Moskalenko
  • A. A. Bush
  • Yu. Yu. Lebedinskii


High-resolution X-ray diffraction method (XRD) is used to determine sizes and crystallographic orientation of the nanocrystallites of the Pd and Pd5Ba phases in palladium–barium cathode. Electron spectroscopy for chemical analysis (ESCA) is used to study Ba and Pd chemical states in cathode material and determine the phase composition including dissolved microimpurities in the phases. The comparison of the XRD and ESCA data makes it possible to reveal effects related to the formation of the BaO crystallites in the cathode material, which are responsible for the emission properties. Electron-energy loss spectroscopy is used to determine the concentration of oxygen vacancies in the BaO crystallites that are formed in the cathode material due to activation. An original crystallite model of the working palladium–barium cathodes that is based on the results of this work may serve as an alternative to the known film model and makes it possible to optimize technology of cathode fabrication and activation.



  1. 1.
    I. P. Li, Candidate’s Dissertation in Engineering (Moscow, 2012).Google Scholar
  2. 2.
    E. M. Savitskii, Electric and Emission Properties of Alloys (Nauka, Moscow, 1978).Google Scholar
  3. 3.
    B. Ch. Dyubua, O. K. Kultashev, and O. V. Polivnikova, Elektron. Tekh. Ser. 1: SVCh-tekh., No. 4, 3 (2008).Google Scholar
  4. 4.
    B. Ch. Dyubua, E. M. Zemchikhin, O. K. Kultashev, A. P. Makarov, A. A. Negirev, O. V. Polivnikova, and S. E. Rozhkov, Elektron. Tekh. Ser. 1: SVCh-tekh., No. 4, 196 (2013).Google Scholar
  5. 5.
    B. Ch. Dyubua and A. N. Korolev, Elektron. Tekh. Ser. 1: SVCh-tekh., No. 1, 5 (2011).Google Scholar
  6. 6.
    V. S. Fomenko, Emission Properties of Materials: Handbook, 4th ed. (Naukova Dumka, Kiev, 1981).Google Scholar
  7. 7.
    V. N. Ageev, Yu. A. Kuznetsov, and N. D. Potekhina, Phys. Solid State 46, 975 (2004).CrossRefGoogle Scholar
  8. 8.
    V. N. Ageev and Yu. A. Kuznetsov, Phys. Solid State 49, 991 (2007).CrossRefGoogle Scholar
  9. 9.
    V. I. Kapustin, Perspekt. Mater., No. 2, 5 (2000).Google Scholar
  10. 10.
    V. I. Kapustin, I. P. Li, A. V. Shumanov, Yu. Yu. Lebedinskii, and A. V. Zablotskii, Tech. Phys. 62, 116 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. I. Kapustin
    • 1
    Email author
  • I. P. Li
    • 2
  • A. V. Shumanov
    • 1
    • 2
  • S. O. Moskalenko
    • 1
    • 2
  • A. A. Bush
    • 1
  • Yu. Yu. Lebedinskii
    • 3
  1. 1.Moscow Technological University MIREAMoscowRussia
  2. 2.OAO PlutonMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations