Advertisement

Technical Physics

, Volume 64, Issue 5, pp 674–679 | Cite as

Influence of High-Temperature Annealing on the Resistance to High Strain Rate and Fracture of Tantalum at Temperatures of 20 and 500°C

  • G. V. GarkushinEmail author
  • A. S. Savinykh
  • S. V. Razorenov
  • G. I. Kanel
PHYSICAL SCIENCE OF MATERIALS
  • 9 Downloads

Abstract

Two series of shock-wave experiments have been conducted in order to measure the Hugoniot elastic limit and determine the strain rate dependence of critical fracture stress for tantalum experiencing spall fracture. Tantalum specimens have been preannealed in vacuum at 1000°C. The evolution of elastoplastic compression shock waves at room and elevated up to 500°C temperatures has been presented from complete wave profiles recorded by a VISAR laser Doppler velocimeter. The spall strength dependence on the strain rate during the expansion of the material in a rarefaction wave has been determined.

Notes

ACKNOWLEDGMENTS

The experiments were conducted in the Moscow regional explosive center for collective use of equipment at the Russian Academy of Sciences.

FUNDING

This study was performed as a part of state task no. 0089-2014-0016 in the framework of the program High-Energy-Density Condensed Matter and Plasma, Russian Academy of Sciences (research area Rapid Physicochemical Transformations and Fracture of Solids and Liquids).

REFERENCES

  1. 1.
    W. M. Isbell, V. R. Christman, and S. G. Babcock, Measurements of Dynamic Properties of Materials, Vol. VI: Tantalum (General Motors Technical Center, Warren, 1971).Google Scholar
  2. 2.
    M. D. Furnish, W. D. Reinhart, W. M. Trott, L. C. Chhabildas, and T. J. Vogler, AIP Conf. Proc. 845, 615 (2006).  https://doi.org/10.1063/1.2263397 CrossRefGoogle Scholar
  3. 3.
    J. R. Asay, T. Ao, T. J. Vogler, J.-P. Davis, and G. T. Gray III, J. Appl. Phys. 106, 073515 (2009).  https://doi.org/10.1063/1.3226882 CrossRefGoogle Scholar
  4. 4.
    S. V. Razorenov, G. I. Kanel, G. V. Garkushin, and O. N. Ignatova, Phys. Solid State 54, 790 (2012).  https://doi.org/10.1134/S1063783412040233 CrossRefGoogle Scholar
  5. 5.
    B. Hammel, D. C. Swift, B. El-Dasher, M. Kumar, G. Collins, and J. Florando, AIP Conf. Proc. 1426, 931 (2012).  https://doi.org/10.1063/1.3686430 CrossRefGoogle Scholar
  6. 6.
    G. V. Garkushin, O. N. Ignatova, A. M. Podurets, and S. V. Razorenov, Deform. Razrushenie Mater. 4, 33 (2013).Google Scholar
  7. 7.
    E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 115, 243502 (2014).  https://doi.org/10.1063/1.4885047 CrossRefGoogle Scholar
  8. 8.
    J. R. Asay, T. J. Vogler, T. Ao, and J. L. Ding, J. Appl. Phys. 109, 073507 (2011).  https://doi.org/10.1063/1.3562178 CrossRefGoogle Scholar
  9. 9.
    G. I. Kanel and S. V. Razorenov, Shockwave Loading of Metals. Movement of the Sample Surface (Inst. Khim. Fiz., Chernogolovka, 1989).Google Scholar
  10. 10.
    S. V. Razorenov, G. I. Kanel, G. V. Garkushin, and A. S. Savinykh, RF Patent No. 2497096 (2013).Google Scholar
  11. 11.
    L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972).  https://doi.org/10.1063/1.1660986 CrossRefGoogle Scholar
  12. 12.
    R. G. McQueen and S. P. Marsh, Report No. GMX-6-566 (Los Alamos Sci. Lab., Los Alamos, 1964), p. 51.Google Scholar
  13. 13.
    G. I. Kanel, S. V. Razorenov, G. V. Garkushin, A. V. Pavlenko, and S. N. Malyugina, Phys. Solid State 58, 1191 (2016).  https://doi.org/10.1134/S1063783416060202 CrossRefGoogle Scholar
  14. 14.
    G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shockwave Phenomena in Condensed Media (Yanus-K, Moscow, 1996).Google Scholar
  15. 15.
    G. I. Kanel, J. Appl. Mech. Tech. Phys. 42, 358 (2001).  https://doi.org/10.1023/A:1018804709273 CrossRefGoogle Scholar
  16. 16.
    G. V. Garkushin, S. V. Razorenov, and G. I. Kanel, Tech. Phys. 53, 1441 (2008).  https://doi.org/10.1134/S1063784208110078 CrossRefGoogle Scholar
  17. 17.
    V. A. Ogorodnikov, E. Y. Borovkova, and S. V. Erunov, Combust., Explos. Shock Waves 40, 597 (2004).  https://doi.org/10.1023/B:CESW.0000041413.64269.1c CrossRefGoogle Scholar
  18. 18.
    M. W. Guinan and D. J. Steinberg, J. Phys. Chem. Solids 35, 1501 (1974).  https://doi.org/10.1016/S0022-3697(74)80278-7 CrossRefGoogle Scholar
  19. 19.
    J. P. Cuq-Lelandias, M. Boustie, L. Soulard, L. Berthe, T. De. Resseguier, P. Combis, J. Bontaz-Carion, and E. Lescoute, RPJ Web Conf. 10, 00014 (2010).  https://doi.org/10.1051/epjconf/20101000014
  20. 20.
    G. Roy, Sc.D. Thesis (Univ. of Poitiers, Poitiers, 2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. V. Garkushin
    • 1
    Email author
  • A. S. Savinykh
    • 1
  • S. V. Razorenov
    • 1
  • G. I. Kanel
    • 2
  1. 1.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Joint Institute of High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations