Advertisement

Technical Physics

, Volume 64, Issue 3, pp 422–426 | Cite as

Peculiarities of Magnetron Sputtering of Nickel Oxide Thin Films for Use in Perovskite Solar Cells

  • A. S. AglikovEmail author
  • D. A. Kudryashov
  • A. M. Mozharov
  • S. V. Makarov
  • A. D. Bolshakov
  • I. S. Mukhin
PHYSICAL ELECTRONICS
  • 7 Downloads

Abstract

Use of inorganic oxides as transport layer material is a promising way to increase the efficiency of perovskite solar cells. Results of the studies of the influence of the gas mix composition in the plasma discharge used during magnetron sputtering on the optical, electrical, and structural parameters of deposited thin nickel oxide films are reported. Addition of oxygen or nitrogen to pure argon atmosphere (up to 30 vol %) was shown to change the growth rate (1.2–2.3 nm/min), resistivity of the samples (8.5–208 Ω cm), material band gap (2.85–3.43 eV), and the spectral dependence of the extinction coefficient, while the structural and morphological parameters of synthesized thin films were not affected. The lowest extinction coefficients were found in films deposited in pure argon atmosphere, which determines the capabilities of their usage in photovoltaic converters based on perovskite compounds.

Notes

ACKNOWLEDGMENTS

The authors are grateful for V.V. Fedorov and G.A.  Sapunov (St. Petersburg National Research Academic University, Russian Academy of Sciences) for assistance in interpreting Raman scattering spectra. The study was supported by the Russian Foundation for Basic Research (project no. 18-32-00899) and grants from the President of the Russian Federation (MK-6492.2018.2, MK-3632.2017.2) and Government of the Russian Federation (state contracts nos. 3.9796.2017/8.9, 16.2593.2017/4.6, and 16.8939.2017/8.9).

REFERENCES

  1. 1.
    A. Kojima et al., J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle Scholar
  2. 2.
    Q. Chen,  H. Zhou,  Z. Hong,  S. Luo,  H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, J. Am. Chem. Soc. 136, 622 (2014).CrossRefGoogle Scholar
  3. 3.
    W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, Science 356, 1376 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, and D. Cahen, J. Phys. Chem. Lett. 5, 429 (2014).CrossRefGoogle Scholar
  5. 5.
    J. Wang, S. Wang, X. Li, L. Zhu, Q. Meng, Y. Xiao, and D. Li, Chem. Commun. 50, 5829 (2014).CrossRefGoogle Scholar
  6. 6.
    T. Krishnamoorthy, F. Kunwu, P. Boix, and H. Li, J. Mater. Chem. A 2, 6305 (2014).CrossRefGoogle Scholar
  7. 7.
    J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T.-C. Wen, Adv. Mater. 25, 3727 (2013).CrossRefGoogle Scholar
  8. 8.
    K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E. W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo, and T.-C. Wen, Sci. Rep. 4, 4756 (2014).CrossRefGoogle Scholar
  9. 9.
    K. E. Lee, L. Liu, and T. L. Kelly, J. Phys. Chem. C 118, 27735 (2014).CrossRefGoogle Scholar
  10. 10.
    X. Li, F. Xie, S. Zhang, J. Hou, and W. C. H. Choy, Light: Sci. Appl. 4, 273 (2015).CrossRefGoogle Scholar
  11. 11.
    J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H. W. Shin, T. K. Ahn, J. H. Noh, and S. C. Yoon, Adv. Mater. 27, 4013 (2015).CrossRefGoogle Scholar
  12. 12.
    K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E. W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo, and T.-C. Wen, Sci. Rep. 4, 4756 (2014).CrossRefGoogle Scholar
  13. 13.
    M. L. Grilli, F. Menchini, T. Dikonimos, P. Nunziante, L. Pilloni, M. Yilmaz, A. Piegari, and A. Mittiga, Sci. Technol 31, 055016 (2016).ADSGoogle Scholar
  14. 14.
    S. Lany, J. Osorio-Guillén, and A. Zunger, Phys. Rev. B 75, 241203 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    N. Mironova-Ulmane, A. Kuzmin, I. Sildos, and M.  Pars, Cent. Eur. J. Phys. 9, 1096 (2011).  https://doi.org/10.2478/s11534-010-0130-9 Google Scholar
  16. 16.
    R. E. Dietz, G. I. Parisot, and A. E. Meixner, Phys. Rev. B 4, 2302 (1971).ADSCrossRefGoogle Scholar
  17. 17.
    K. Anandan and V. Rajendran, Mater. Sci. Semicond. Process. 14, 43 (2011).CrossRefGoogle Scholar
  18. 18.
    K. Kaviyarasu, E. Manikandan, J. Kennedy, and M. Jayachandran, Mater. Lett. 120, 243 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Aglikov
    • 1
    • 2
    Email author
  • D. A. Kudryashov
    • 1
  • A. M. Mozharov
    • 1
  • S. V. Makarov
    • 2
  • A. D. Bolshakov
    • 1
  • I. S. Mukhin
    • 1
    • 2
  1. 1.St. Petersburg Academic UniversitySt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations