Technical Physics

, Volume 63, Issue 12, pp 1792–1799 | Cite as

Study of the Microstructure of the Aluminum-Based Composite Material with the Addition of Carbon Nanotubes after Spark Plasma Sintering

  • N. A. BunakovEmail author
  • D. V. Kozlov
  • V. N. Golovanov


Electron microscopy is used to study samples of an aluminum matrix composite material with multiwalled carbon nanotubes (MWCNTs). The features of microstructure changes occurring during the preparation of a composite in a spark plasma sintering (SPS) setup are identified. The results of the simulation of the SPS process are presented taking into account the high electro- and heat-conducting properties of MWCNTs, which qualitatively explain the differences in the sintering processes of pure aluminum and composite samples.



  1. 1.
    S. V. Bulyarskii, Carbon Nanotubes: Technology, Adjustment of Characteristics, and Applications (Strezhen’, Ul’yanovsk, 2011).Google Scholar
  2. 2.
    A. Agarwal, S. R. Bakshi, and D. Lahiri, Carbon Nanotubes: Reinforced Metal Matrix Composites (CRC Press, 2010).Google Scholar
  3. 3.
    E. G. Grigor’ev and B. A. Kalin, Electric-Discharge Powder Technology (Nats. Issled. Yad. Univ., Moscow, 2008).Google Scholar
  4. 4.
    E. S. Klimov, O. A. Davydova, M. V. Buzaeva, I. A. Maka-rova, D. V. Kozlov, N. A. Bunakov, N. A. Nishchev, A. A. Panov, and A. A. Pynenkov, Bashk. Khim. Zh. 21, 109 (2014).Google Scholar
  5. 5.
    N. A. Bunakov, D. V. Kozlov, V. N. Golovanov, E. S. Klimov, M. S. Efimov, Izv. Vyssh. Uchebn. Zaved. Povolzh. Reg. Fiz.-Mat. Nauki, No. 2, 134 (2016). doi 10.21685/2072-3040-2016-2-11Google Scholar
  6. 6.
    H. Kurita, T. Miyazaki, A. Kawasaki, and J.-F. Silvain, J. Mater. Sci. 49, 3268 (2014). doi 10.1007/s10853-014-8032-7ADSCrossRefGoogle Scholar
  7. 7.
    Yu. M. Annenkov, S. A. Akarachkin, and A. S. Ivashu-tenko, Butlerov. Soobshch. 31, 130 (2012).Google Scholar
  8. 8.
    M. Suarez, A. Fernandez, J. L. Menendez, et al., in Sintering Applications, Ed. by B. Ertug (InTech, Rijeka, 2013), p. 320. doi 10.5772/53706Google Scholar
  9. 9.
    E. Olevsky and L. Froyen, Scr. Mater. 55, 1175 (2006).CrossRefGoogle Scholar
  10. 10.
    E. Olevsky, V. Tikare, and T. Garino, J. Am. Ceram. Soc. 89, 1914 (2006).CrossRefGoogle Scholar
  11. 11.
    E. A. Olevsky, C. Garcia-Cardona, et al., J. Am. Ceram. Soc. 95, 2414 (2012).CrossRefGoogle Scholar
  12. 12.
    A. V. Eletskii, Phys.-Usp. 52, 209 (2009).CrossRefGoogle Scholar
  13. 13.
    V. B. Muratov, J. Superhard Mater. 34, 173 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. A. Bunakov
    • 1
    Email author
  • D. V. Kozlov
    • 1
  • V. N. Golovanov
    • 1
  1. 1.Kapitsa Scientific Research Institute, Ul’yanovsk State UniversityUl’yanovskRussia

Personalised recommendations