Advertisement

Technical Physics

, Volume 63, Issue 12, pp 1834–1839 | Cite as

Influence of a Buffer Layer on the Formation of a Thin-Film Nickel Catalyst for Carbon Nanotube Synthesis

  • S. V. BulyarskiyEmail author
  • E. V. Zenova
  • A. V. Lakalin
  • M. S. Molodenskii
  • A. A. Pavlov
  • A. M. Tagachenkov
  • A. V. Terent’ev
PHYSICS OF NANOSTRUCTURES
  • 3 Downloads

Abstract

The formation of nanoparticles of a thin-film nickel catalyst applied on a buffer layer in the form of pure titanium, titanium oxide, or titanium nitride has been studied. It has been shown that if nanotubes are synthesized in three stages (oxidation, reduction, and growth of nanotubes), the situation may arise when the metallic catalyst becomes isolated from the surface, and hence, from the hydrocarbon flux, as a result of which the nanotube growth stops. Isolation takes place when the interface between titanium oxide and the gas phase in the reactor moves. In this case, titanium oxide goes round a nickel oxide nanoparticle and insulates it. The displacement rate of this interface and the coefficient of hydrogen diffusion in titanium dioxide have been determined.

Notes

REFERENCES

  1. 1.
    S. V. Bulyarskiy, Carbon Nanotubes: Technology, Adjustment of Characteristics, and Applications (Strezhen’, Ul’yanovsk, 2011).Google Scholar
  2. 2.
    C. Rutherglen and P. Burke, Nano Lett. 7, 3296 (2007). doi 10.1021/nl0714839ADSCrossRefGoogle Scholar
  3. 3.
    K. Jensen, J. Weldon, H. Garcia, and A. Zettl, Nano Lett. 7, 3508 (2007). doi 10.1021/nl0721113ADSCrossRefGoogle Scholar
  4. 4.
    S. V. Bulyarskiy, S. A. Bulyarskaya, L. N. Vostretsova, A. A. Dudin, A. P. Orlov, A. A. Pavlov, A. S. Basaev, E. P. Kitsyuk, A. A. Shamanaev, and Yu. P. Shaman, Nano- Mikrosist. Tekh., No. 5, 3 (2015).Google Scholar
  5. 5.
    K. Kempa, J. Rybczynski, Z. P. Huang, K. Gregorczyk, et al., Adv. Mater. 19, 421 (2007). doi 10.1002/adma. 200601187CrossRefGoogle Scholar
  6. 6.
    L. A. Chernozatonskii, Y. V. Gulyaev, Z. J. Kosakovskaja, et al., Chem. Phys. Lett. 233, 63 (1995). doi 10.1016/0009-2614(94)01418-UADSCrossRefGoogle Scholar
  7. 7.
    W. A. De Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995). doi 10.1126/science.270.5239.1179ADSCrossRefGoogle Scholar
  8. 8.
    A. G. Rinzler, J. H. Hafner, P. Nikolaev, et al., Science 269, 1550 (1995). doi 10.1126/science.269.5230.1550ADSCrossRefGoogle Scholar
  9. 9.
    O. A. Louchev, Th. Laude, Y. Sato, and H. Kanda, J. Chem. Phys. 118, 7622 (2003). doi 10.1063/1.1562195ADSCrossRefGoogle Scholar
  10. 10.
    V. Jourdain and Ch. Bichara, Carbon 58, 2 (2013). doi 10.1016/j.carbon.2013.02.046CrossRefGoogle Scholar
  11. 11.
    S. V. Bulyarskiy and A. S. Basaev, Growth Catalysts for Carbon Nanotubes (LAP LAMBERT, 2015).Google Scholar
  12. 12.
    S. Amelinckx, D. Bernaerts, X. B. Zhang, G. Van Tendeloo, and J. Van Landuyt, Science 267, 1334 (1995). doi 10.1126/science.267.5202.1334ADSCrossRefGoogle Scholar
  13. 13.
    M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, J. Appl. Phys. 90, 5308 (2001). doi 10.1063/1.1410322ADSCrossRefGoogle Scholar
  14. 14.
    L. Valentini, J. M. Kenny, L. Lozzi, and S. Santucci, J. Appl. Phys. 92, 6188 (2002). doi 10.1063/1.1410322ADSCrossRefGoogle Scholar
  15. 15.
    Z. F. Ren, Z. P. Huang, D. Z. Wang, J. G. Wen, J. W. Xu, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, and M. A. Reed, Appl. Phys. Lett. 75, 1086 (1999). doi 10.1063/1.124605ADSCrossRefGoogle Scholar
  16. 16.
    B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965). doi 10.1063/1.1713945ADSCrossRefGoogle Scholar
  17. 17.
    A. S. Grove, Physics and Technology of Semiconductor Device (Willey, New York, 1967), Chap. 2.Google Scholar
  18. 18.
    D. C. Lagoudas, X. Ma, D. A. Miller, and D. H. Allen, Int. J. Eng. Sci. 33, 2327 (1995). doi 10.1016/0020-7225(95)00073-7CrossRefGoogle Scholar
  19. 19.
    P. B. Entchev, D. C. Lagoudas, and J. C. Slattery, Int. J. Eng. Sci. 39, 695 (2001). doi 10.1016/S0020-7225(00)00053-7CrossRefGoogle Scholar
  20. 20.
    J. Unnam, R. N. Shenoy, and R. K. Clark, Oxid. Met. 26, 231 (1986).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Bulyarskiy
    • 1
    Email author
  • E. V. Zenova
    • 1
  • A. V. Lakalin
    • 1
  • M. S. Molodenskii
    • 1
  • A. A. Pavlov
    • 1
  • A. M. Tagachenkov
    • 1
  • A. V. Terent’ev
    • 1
    • 2
  1. 1.Institute of Nanotechnologies for Microelectronics, Russian Academy of SciencesMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations