Advertisement

Technical Physics

, Volume 63, Issue 12, pp 1800–1807 | Cite as

Effect of Low-Energy Ion-Plasma Treatment on Residual Stresses in Thin Chromium Films

  • A. S. BabushkinEmail author
  • I. V. UvarovEmail author
  • I. I. AmirovEmail author
PHYSICAL SCIENCE OF MATERIALS
  • 5 Downloads

Abstract

The results of studying the effect of low-energy argon ion bombardment (~30 eV) on residual mechanical stresses in a thin chromium film are presented. The change in the mean value and stress gradient as a function of the ion bombardment duration was determined by the change in the bend of test micromechanical bridges and cantilevers. A method is proposed for calculating the depth of the stress modification in a film using these structures. It has been established that the long-term ion-plasma treatment at room temperature affects stresses at a depth of more than 100 nm.

Notes

REFERENCES

  1. 1.
    S. Dutta, M. Imran, R. Pal, K. K. Jain, and R. Chatterjee, Microsyst. Technol. 17, 1739 (2011). doi 10.1007/ s00542-011-1360-5CrossRefGoogle Scholar
  2. 2.
    R. Pratapa, A. Dangib, and A. R. Beheraa, ECS Trans. 75, 35 (2016). doi 10.1149/07517.0035ecstCrossRefGoogle Scholar
  3. 3.
    M. A. Matin, K. Ozaki, D. Akai, K. Sawada, and M. Ishida, Comput. Mater. Sci 85, 253 (2014). doi 10.1016 /j.commatsci.2014.01.005CrossRefGoogle Scholar
  4. 4.
    R. Maboudian, Surf. Sci. Rep. 30, 207 (1998). doi 10.1016/S0167-5729(97)00014-9ADSCrossRefGoogle Scholar
  5. 5.
    Z. Cedric Xia and J. W. Hutchinson, J. Mech. Phys. Solids 48, 1107 (2000). doi 10.1016/S0022-5096(99)00081-2ADSCrossRefGoogle Scholar
  6. 6.
    A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, Rep. Prog. Phys. 74, 036101 (2011). doi 10.1088/0034-4885/74/3/036101ADSCrossRefGoogle Scholar
  7. 7.
    K. Dahmen, M. Giesen, J. Ikonomov, K. Starbova, and H. Ibach, Thin Solid Films 428, 6 (2003). doi 10.1016/S0040-6090(02)01182-3ADSCrossRefGoogle Scholar
  8. 8.
    W. L. Chan, E. Chason, and C. Iamsumang, Nucl. Instrum. Methods Phys. Res., Sect. B 257, 428 (2007). doi 10.1016/j.nimb.2007.01.042Google Scholar
  9. 9.
    W. L. Chan and E. Chason, J. Vac. Sci. Technol. A 26, 44 (2008). doi 10.1116/1.2812432CrossRefGoogle Scholar
  10. 10.
    W. L. Chan, K. Zhao, N. Vo, Y. Ashkenazy, D. G. Cahill, and R. S. Averback, Phys. Rev. B 77, 205405 (2008). doi 10.1103/PhysRevB.77.205405ADSCrossRefGoogle Scholar
  11. 11.
    S. P. Kim, H. B. Chew, E. Chason, V. B. Shenoy, and K. S. Kim, Proc. R. Soc. London, Ser. A 468, 2550 (2012). doi 10.1098/rspa.2012.0042ADSCrossRefGoogle Scholar
  12. 12.
    S. G. Mayr and R. S. Averback, Phys. Rev. B 68, 214105 (2003). doi 10.1103/PhysRevB.68.214105ADSCrossRefGoogle Scholar
  13. 13.
    A. Misra, S. Fayeulle, H. Kung, T. E. Mitchell, and M. Nastasi, Nucl. Instrum. Methods Phys. Res., Sect. B 148, 211 (1999). doi 10.1016/S0168-583X(98)00780-0Google Scholar
  14. 14.
    F. Liu, C. H. Li, A. P. Pisano, C. Carraro, and R. Maboudian, J. Vac. Sci. Technol. A 28, 1259 (2010). doi 10.1116/1.3480341CrossRefGoogle Scholar
  15. 15.
    A. S. Babushkin, I. V. Uvarov, and I. I. Amirov, J. Phys.: Conf. Ser. 741, 012208 (2016). doi 10.1088/ 1742-6596/741/1/012208Google Scholar
  16. 16.
    E. G. Fu, Y. Q. Wang, and M. Nastasi, J. Phys. D: Appl. Phys. 45, 495303 (2012). doi 10.1088/0022-3727/45/ 49/495303CrossRefGoogle Scholar
  17. 17.
    I. I. Amirov, V. V. Naumov, M. O. Izyumov, and R. S. Selyukov, Tech. Phys. Lett. 39, 130 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    G. G. Stoney, Proc. R. Soc. London, Ser. A 82, 172 (1909).ADSCrossRefGoogle Scholar
  19. 19.
    Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-ray Diffraction, and Electron Microscopy (Metallurgiya, Moscow, 1982).Google Scholar
  20. 20.
    G. Cardinale, D. G. Howitt, K. F. McCarty, D. L. Medlin, P. B. Mirkarimi, and N. R. Moody, Diamond Relat. Mater. 5, 1295 (1996). doi 10.1016/0925-9635(96)00541-9ADSCrossRefGoogle Scholar
  21. 21.
    Y.-H. Min and Y.-K. Kim, J. Micromech. Microeng. 10, 314 (2000). doi 10.1088/0960-1317/10/3/303ADSCrossRefGoogle Scholar
  22. 22.
    M. T.-K. Hou and R. Chen, J. Micromech. Microeng. 14, 490 (2004). doi 10.1088/0960-1317/14/4/008ADSCrossRefGoogle Scholar
  23. 23.
    J. Laconte, D. Flandre, and J. P. Raskin, Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration (Springer, 2006).Google Scholar
  24. 24.
    H. Guckel, D. Burns, C. Rutigliano, E. Lovell, and B. Choi, J. Micromech. Microeng 2, 86 (1992). doi 10.1088/0960-1317/2/2/004ADSCrossRefGoogle Scholar
  25. 25.
    M. Mehregany, R. T. Howe, and S. D. Senturia, J. Appl. Phys. 62, 3579 (1987). doi 10.1063/1.339285ADSCrossRefGoogle Scholar
  26. 26.
    F. Ericson, S. Greek, J. Söderkvist, and J.-A. Schweitz, J. Micromech. Microeng. 7, 30 (1997). doi 10.1088/ 0960-1317/7/1/006ADSCrossRefGoogle Scholar
  27. 27.
    L. Lin, A. P. Pisano, and R. T. Howe, J. Microelectromech. Syst. 6, 313 (1997). doi 10.1109/84.650128CrossRefGoogle Scholar
  28. 28.
    H. Mehner, S. Leopold, and M. Hoffmann, J. Micromech. Microeng. 23, 095030 (2013). doi 10.1088/0960-1317/23/9/095030ADSCrossRefGoogle Scholar
  29. 29.
    W. Fang and J. A. Wickert, J. Micromech. Microeng. 6, 301 (1996). doi 10.1088/0960-1317/6/3/002ADSCrossRefGoogle Scholar
  30. 30.
    F. Fachin, S. A. Nikles, J. Dugundji, and B. L. Wardle, J. Micromech. Microeng. 21, 095017 (2011). doi 10.1088/0960-1317/21/9/095017ADSCrossRefGoogle Scholar
  31. 31.
    D. L. DeVoe and A. P. Pisano, J. Microelectromech. Syst. 6, 266 (1997). doi 10.1109/84.623116CrossRefGoogle Scholar
  32. 32.
    G. S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, 2007).Google Scholar
  33. 33.
    M. Stefenelli, J. Todt, A. Riedl, W. Ecker, T. Muller, R. Daniel, M. Burghammer, and J. Keckes, J. Appl. Crystallogr. 46, 1378 (2013). doi 10.1107/S0021889813019535CrossRefGoogle Scholar
  34. 34.
    E. Knystautas, Engineering Thin Films and Nanostructures with Ion Beams (CRC Press, 2005).CrossRefGoogle Scholar
  35. 35.
    A. N. Didenko, Yu. P. Sharkeev, E. V. Kozlov, and A. I. Ryabchikov, Long-Range Interaction Effects in Ion-Implanted Metallic Materials (NTL, Tomsk, 2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Physics and Technology, Yaroslavl Branch, Russian Academy of SciencesYaroslavlRussia

Personalised recommendations