# A New Approach to the Justification of the Wolkenstein–Ptitsyn Formula for the Parameter of the Vitrification Equation

- 4 Downloads

### Abstract

An extended interpretation of the Wolkenstein–Ptitsyn formula for temperature band δ*T*_{g}, characterizing a range of transition from liquid to glass, is considered using the Razumovskaya–Bartenev concept. The derivation of this formula proposed by the authors does not depend on the specific type of temperature dependence of relaxation time. For silicate glasses, calculation δ*T*_{g} by this formula agrees with the calculation by the Williams–Landel–Ferry relation and with the left side of glass transition equation *q*τ_{g} = δ*T*_{g}, where *q* is the cooling rate and τ_{g} is relaxation time. Based on the experimental data, the calculation of parameters of the Razumovskaya–Bartenev equation for silicate glasses and amorphous polymers is carried out for the first time.

## Notes

### ACKNOWLEDGMENTS

The authors are grateful to Prof. I.V. Razumovskaya for consultation regarding the derivation of the Razumovskaya–Bartenev equation and discussion of the results.

The study was financially supported by the Ministry of Education and Science of Russian Federation (project no. 3.5406.2017/8.9).

## REFERENCES

- 1.M. V. Vol’kenshtein and O. B. Ptitsyn, Zh. Tekh. Fiz.
**26**, 2204 (1956).Google Scholar - 2.L. I. Mandel’shtam and M. A. Leontovich, Zh. Eksp. Teor. Fiz.
**7**, 438 (1937).Google Scholar - 3.G. M. Bartenev, Dokl. Akad. Nauk SSSR
**76**, 227 (1951).Google Scholar - 4.S. V. Nemilov, Glass Phys. Chem.
**39**, 609 (2013).CrossRefGoogle Scholar - 5.D. S. Sanditov, J. Exp. Theor. Phys.
**123**, 429 (2016).ADSCrossRefGoogle Scholar - 6.S. V. Nemilov, J. Exp. Theor. Phys.
**124**, 758 (2017).ADSCrossRefGoogle Scholar - 7.D. S. Sanditov, J. Exp. Theor. Phys.
**124**, 760 (2017).ADSCrossRefGoogle Scholar - 8.V. G. Rostiashvili, V. I. Irzhak, and B. A. Rozenberg,
*Glass Transitions in Polymers*(Khimiya, Leningrad, 1987).Google Scholar - 9.D. S. Sanditov and G. M. Bartenev,
*Physical Properties of Disordered Structures*(Nauka, Novosibirsk, 1982).Google Scholar - 10.I. V. Razumovskaya and G. M. Bartenev,
*Proc. V All-Union Conf. on Vitreous State, Leningrad, USSR, 1969*(Nauka, Leningrad, 1971), p. 34.Google Scholar - 11.M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc.
**77**, 3701 (1955).CrossRefGoogle Scholar - 12.J. D. Ferry,
*Viscoelastic Properties of Polymers*(Marcel Dekker, New York, 1970).Google Scholar - 13.B. A. Bestul, Glastech. Ber.
**32**, 59 (1959).Google Scholar - 14.D. S. Sanditov, D. B. Dorzhiev, and Zh. P. Baldanov, Zh. Fiz. Khim.
**47**, 2990 (1973).Google Scholar - 15.S. S. Badmaev, S. Sh. Sangadiev, and D. S. Sanditov, Vestn. Buryat. Gos. Univ. Fiz. Khim., No. 3, 99 (2015).Google Scholar
- 16.V. A. Durov and M. I. Shakhparonov, Zh. Fiz. Khim.
**53**, 2456 (1979).Google Scholar - 17.C. A. Angell, J. Phys. Chem. Solids
**49**, 836 (1988).CrossRefGoogle Scholar - 18.http://www.sciglass.info/.Google Scholar
- 19.G. M. Bartenev and D. S. Sanditov,
*Relaxation Processes in Glassy Systems*(Nauka, Novosibirsk, 1986).Google Scholar - 20.S. V. Stolyar and S. A. Besedina, Fiz. Khim. Stekla
**18**(3), 88 (1992).Google Scholar - 21.G. M. Bartenev,
*Structure and Mechanical Properties of Inorganic Glasses*(Stroiizdat, Moscow, 1966).Google Scholar - 22.F. Simon, Z. Anorg. Allg. Chem.
**203**, 219 (1931).CrossRefGoogle Scholar - 23.D. S. Sanditov and I. V. Razumovskaya, Polym. Sci. Ser. A
**60**, 156 (2018).CrossRefGoogle Scholar