Advertisement

Technical Physics

, Volume 63, Issue 12, pp 1736–1742 | Cite as

The Stability of the Optimal Aerodynamic Design of an Isolated Three-Dimensional Wing to Its Initial Form

  • S. V. PeiginEmail author
  • S. V. Timchenko
  • B. S. Epstein
GASES AND LIQUIDS
  • 2 Downloads

Abstract

The results are presented for the initial form stability analysis of the optimal aerodynamic design algorithm in context of an isolated three-dimensional wing of a wide-body long-range aircraft. The solution to the problem of geometry determination with a minimum of wing total drag subject to a fixed lift coefficient with allowance for numerous aerodynamic and geometrical constraints by means of the algorithm combining high-precision mathematical modeling and global optimal search using supercomputing technologies. It is established that the algorithm is stable to the choice of the wing initial form, because the optimal designs obtained for two considerably distinct variants of the wing’s initial form are very close to each other and have practically identical integral aerodynamic properties at the main design point as well as in a wide range of flight conditions.

Notes

REFERENCES

  1. 1.
    A. Jameson, L. Martinelli, and J. Vassberg, Proc. 23rd Int. Congress of Aeronautical Sciences, Toronto, Canada, 2002. http://aero-comlab.stanford.edu/Papers/jameson_ICAS_2002.pdf.Google Scholar
  2. 2.
    J. Vassberg and A. Jameson, Aerodynamic Shape Optimization. Part 1: Theoretical Background (Von Karman Institute, Brussels, 2006).Google Scholar
  3. 3.
    F. Alauzet, B. Mohammadi, and O. Pironneau, in Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Ed. by G. Buttazzo and A. Frediani (Springer, 2012), p. 323.Google Scholar
  4. 4.
    B. Mohammadi and O. Pironneau, Annu. Rev. Fluid Mech. 36, 255 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    N. Gauger, ECMI Newsl., No. 41, 4 (2007).Google Scholar
  6. 6.
    N. Kroll, N. Gauger, J. Brezillon, R. Dwight, et al., J. Comput. Appl. Math. 203, 397 (2007).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    B. Epstein, J. Jameson, S. Peigin, D. Roman, N. Harrison, and J. Vassberg, J. Aircr. 46, 526 (2009).CrossRefGoogle Scholar
  8. 8.
    A. Harten and S. Osher, SIAM J. Numer. Anal. 24, 279 (1987).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    C.-W. Shu and S. Osher, J. Comput. Phys. 77, 439 (1988).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    B. Epstein, A. Averbuch, and I. Yavneh, J. Comput. Phys. 168, 316 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    B. Epstein and S. V. Peigin, Int. J. Comput. Fluid Dyn. 18, 289 (2004).CrossRefGoogle Scholar
  12. 12.
    S. Peigin and B. Epstein, Int. J. Numer. Methods Fluids 45, 1339 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    B. Epstein and S. Peigin, AIAA J. 43, 1946 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    S. Peigin and B. Epstein, Aerosp. Sci. Technol. 12, 125 (2008).CrossRefGoogle Scholar
  15. 15.
    S. Peigin and B. Epstein, J. Supercomput. 29, 243 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Peigin
    • 1
    Email author
  • S. V. Timchenko
    • 1
  • B. S. Epstein
    • 1
  1. 1.OOO Optimenga-777MoscowRussia

Personalised recommendations