Advertisement

Technical Physics

, Volume 63, Issue 12, pp 1784–1791 | Cite as

Analysis of the Effect of Physico-Mechanical Characteristics of Cumulative Liner Material on Parameters of a High-Speed Element

  • V. I. Kolpakov
  • S. V. Ladov
  • Ya. M. NikolskayaEmail author
  • S. V. Fedorov
SOLID STATE
  • 5 Downloads

Abstract

In this paper, we present the results of numerical simulation of explosive formation of a high-speed compact element from copper, steel, and aluminum cumulative liners combining the shape of a hemispherical segment smoothly converting into a cylindrical surface (“hemisphere–cylinder” liners). The problem is solved in a two-dimensional axisymmetric setting considering the limiting parameters of the dynamic stress-strain state causing plastic flow and destruction of the cumulative liner material. The original model of the functioning of cumulative shaped charge, which determines the effect of individual elements of the cumulative liners, including the difference in numerical characteristics of their physicomechanical properties and critical destruction conditions, on the final parameters of the high-speed compact element, was used. The plastic properties of the material and the critical conditions for its destruction were found not to affect the final velocity of the formed high-speed compact element, but they affect its shape, dimensions, and mass.

Notes

REFERENCES

  1. 1.
    Explosion Physics, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2004), Vol. 2.Google Scholar
  2. 2.
    L. P. Orlenko, Explosion and Impact Physics. Textbook for Higher Education, 2nd ed. (Fizmatlit, Moscow, 2008).Google Scholar
  3. 3.
    I. V. Zhdanov, A. S. Knyazev, and D. V. Malyarov, Tr. Tomsk. Gos. Univ. Ser. Fiz.-Mat. 276, 193 (2010).Google Scholar
  4. 4.
    N. A. Goldenko, E. F. Gryaznov, A. D. Sudomoev, and V. A. Fel’dshtein, Kosmonavt. Raketostr., No. 7, 42 (2016).Google Scholar
  5. 5.
    S. V. Fedorov, Y. M. Bayanova, and S. V. Ladov, Combust., Explos. Shock Waves 51, 130 (2015).CrossRefGoogle Scholar
  6. 6.
    V. V. Selivanov, S. V. Fedorov, Ya. M. Nikolskaya, and S. V. Ladov, Acta Astronaut. 135 (10), 34 (2017). doi 10.1016/j.actaastro.2016.10.025ADSCrossRefGoogle Scholar
  7. 7.
    S. V. Fedorov, S. V. Ladov, and Ya. M. Nikolskaya, J. Phys. Conf. Ser. 894, 012066 (2017). doi 10.1088/ 1742-6596/894/1/012066CrossRefGoogle Scholar
  8. 8.
    S. V. Fedorov, Combust., Explos. Shock Waves 52, 600 (2016).CrossRefGoogle Scholar
  9. 9.
    S. V. Fedorov, Vestn. Mos. Gos. Tekh. Univ. Ser. Estestv. Nauki, No. 3, 71 (2017).Google Scholar
  10. 10.
    S. V. Fedorov, S. V. Ladov, Ya. M. Nikol’skaya, V. D. Baskakov, M. A. Baburin, A. E. Kurepin, A. A. Gorbunkov, and A. S. Pirozerskii, Combust., Explos. Shock Waves 53, 479 (2017).CrossRefGoogle Scholar
  11. 11.
    V. I. Kolpakov, Proc. XIII Int. Conf. “Khariton Topical Scientific Readings,” Sarov, Russia, 2011, p. 532.Google Scholar
  12. 12.
    Theoretical and Experimental Studies into High-Velocity Interactions of Two Bodies, Ed. by A. V. Gerasimov (Tomsk. Univ., Tomsk, 2007).Google Scholar
  13. 13.
    A. V. Babkin, V. I. Kolpakov, V. N. Okhitin, and V. V. Selivanov, Numerical Methods in Physics of High-Speed Processes. Textbook for Technical Colleges, 2nd ed. (Mos. Gos. Tekh. Univ., Moscow, 2006).Google Scholar
  14. 14.
    V. V. Selivanov, Mechanics of Fracture of Deformable Bodies. Textbook for Technical Colleges, 2nd ed. (Mos. Gos. Tekh. Univ., Moscow, 2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Kolpakov
    • 1
  • S. V. Ladov
    • 1
  • Ya. M. Nikolskaya
    • 1
    Email author
  • S. V. Fedorov
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations