Technical Physics

, Volume 63, Issue 3, pp 411–415 | Cite as

Growth of Zinc Compound Nanocrystals from Different Electrolytes

  • N. B. Danilevskaya
  • A. V. Lysytsya
  • M. V. Moroz
  • B. D. Nechyporuk
  • N. Yu. Novoselets’kyi
  • B. P. Rudyk
Physics of Nanostructures
  • 7 Downloads

Abstract

The influence of the electrolyte composition on electrolytically synthesized zinc compound powders has been studied. It has been shown that if an electrolyte made by dissolving Na2S2O3 ∙ 5H2O is kept at room temperature, a mixture of zinc sulfide and hydrozincite is obtained. An electrolyte containing Na2SO3 or Na2S ∙ 9H2O gives a mixture of hydrozincite with zinc oxide and/or with zinc sulfide. The size of nanocrystals has been determined. It has been found that hydrozincite decomposes into zinc oxide, water, and carbon dioxide in the temperature range of 200–250°C.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kh. A. Abdullin, M. T. Gabdullin, L. V. Gritsenko, D. V. Ismailov, Zh. K. Kalkozova, S. E. Kumekov, Zh. O. Mukash, A. Yu. Sazonov, and E. I. Terukov, Semiconductors 50, 1010 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    N. M. Lyadov, A. I. Gumarov, R. N. Kashapov, A. I. Noskov, V. F. Valeev, V. I. Nuzhdin, V. V. Bazarov, R. I. Khaibullin, and I. A. Faizrakhmanov, Semiconductors 50, 43 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    R. Raguvaran, A. Manuja, and B. K. Manuja, Immunome Res. 11 (1), 095 (2015).Google Scholar
  4. 4.
    I. U. Haq and A.-M. Azad, Sensors 12, 8259 (2012).CrossRefGoogle Scholar
  5. 5.
    P. N. Krylov, R. M. Zakirova, I. A. Knyazev, N. V. Kostenkov, E. A. Romanov, and I. V. Fedotova, Semiconductors 49, 1327 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    V. S. S. Kumar and K. V. Rao, J. Nano-Electron. Phys. 5, 02026 (2013).Google Scholar
  7. 7.
    V. S. Burakov, E. A. Nevar, M. I. Nedel’ko, and N. V. Tarasenko, Tech. Phys. Lett. 34, 679 (2008).ADSGoogle Scholar
  8. 8.
    V. A. Svetlichnyi and I. N. Lapin, Russ. Phys. J. 56, 581 (2013).CrossRefGoogle Scholar
  9. 9.
    V. R. Gaevs’kyi, B. D. Nechyporuk, N. Yu. Novoselets’kyi, and B. P. Rudyk, Ukr. J. Phys. 58, 385 (2013).CrossRefGoogle Scholar
  10. 10.
    N. Beedri, Y. Inamdar, S. A. Sayyed, A. Shaikh, S. Jadkar, and H. Pathan, Chem. Chem. Technol. 8, 283 (2014).Google Scholar
  11. 11.
    Yu. F. Lavorik, B. D. Nechyporuk, N. Yu. Novoselets’kyi, O. V. Parasyuk, B. P. Rudyk, and V. V. Filonenko, UA Patent No. 92078 (2010).Google Scholar
  12. 12.
    H. Preston-Thomas, Metrologia 27, 3 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    N. A. Salahuddin, M. El-Kemary, and E. M. Ibrahim, Nanosci. Nanotech. 5 (4), 82 (2015).Google Scholar
  14. 14.
    W. Wen-Zhong, L. Yu-Jie, S. Hong-Long, and Z. Gu-Ling, Chin. Phys. Lett 31, 097802 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    V. D. Mote, Y. Purushotham, and B. N. Dole, J. Theor. Appl. Phys. 6, 1 (2012).CrossRefGoogle Scholar
  16. 16.
    N. B. Danilevska, M. V. Moroz, B. D. Nechyporuk, N. Yu. Novoseletskyy, and B. P. Rudyk, J. Phys. Stud. 20, 3601 (2016).Google Scholar
  17. 17.
    Yu. I. Sirotin and M. P. Shaskol’skaya, Fundamentals of Crystal Physics (Nauka, Moscow, 1975).Google Scholar
  18. 18.
    S. Adachi, Handbook on Physical Properties of Semiconductors (Springer, 2004), Vol. 3.Google Scholar
  19. 19.
    J. Cheng and K. M. Poduska, Nanomaterials 3, 317 (2013).CrossRefGoogle Scholar
  20. 20.
    I. U. Haq and A.-M. Azad, Sensors 12, 8259 (2012).CrossRefGoogle Scholar
  21. 21.
    N. Kanari, D. Mishra, I. Gaballah, and B. Dupre, Thermochim. Acta 410, 93 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. B. Danilevskaya
    • 1
  • A. V. Lysytsya
    • 1
  • M. V. Moroz
    • 2
  • B. D. Nechyporuk
    • 1
  • N. Yu. Novoselets’kyi
    • 1
  • B. P. Rudyk
    • 2
  1. 1.Rivne State Humanitarian UniversityRivneUkraine
  2. 2.National University of Water and Environmental EngineeringRivneUkraine

Personalised recommendations